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ML Pipelines are Increasing in Complexity
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/ooming in on the ML Engineer Persona

ML engineers must know data engineering, analysis, statistics, ML, software
engineering, and more. Even then, their job is difficult!




Understanding the Human-Centered MLOps Workflow
Operationalizing Machine Learning: An Interview Study (2022)

e We thought the ML lifecycle is
fully amenable to automation,
but it's not

e Manual work includes:

Data Preparation on a
Schedule

Multi-Stage
Evaluation &

e Handling feedback or ground-
truth delays

e Monitoring pipeline inputs &
outputs

Monitoring & Response

e And many more tasks!
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Handling Feedback Delays

“| have no idea how well [models]
actually perform on live data. Feedback is

always delayed by at least 2 weeks.”

e |In the absence of labels, to learn of prediction errors, engineers
often do ad-hoc manual inspection of data or rely on loosely-
correlated product metrics

e We started building MLTRACE, a bolt-on system for observability in
end-to-end pipelines. We integrated provenance and runtime
assertion testing & monitoring capabilities

e Can we try to estimate metrics that require labels (e.g., accuracy)?



Impact of Feedback Delays
Towards Observability for Production ML Pipelines (2023)

No feedback Partial feedback Full feedback
Accuracy: Accuracy: Accuracy:
7@ /9%7? & 86%

Prediction

steam Py P2 P3Py Ps  Ps Pz

= t
Label Ef B PePs P PuPy =
stream
Key:
v/ Correct

X Incorrect

How to get the accuracy of Ps that don’t have labels yet?



Estimating Performance with Feedback Delays

., Estimate unknown performance with known, labeled data
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feature 1 feature 2 label

TRUE
FALSE
FALSE
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Estimating Performance with Feedback Delays

, Estimate unknown performance with known, labeled data

id feature 1 feature 2 label © “Bucket” validation
A TRUE set to characterize
B -ALSE data distribution
C -ALSE Training
D TRUE set i Compute per-
C TRUE bucket accuracies
: TRUE
'y
G FALSE P
Validation % Use buckets 1o
H TRUE maintain histogram of
set
unlabeled dato




Estimating Performance with Feedback Delays

Training

llustrative example with NYC Taxicab Dataset to predict tip > 10%

set

# passengers

pickup loc

dropoff loc

A ... | TRUE
B ... | FALSE
C ... | FALSE
D ... | TRUE
E ... | TRUE
F ... | TRUE
G ... | FALSE
H ... | TRUE

Validation set
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Estimating Performance with Feedback Delays

llustrative example with NYC Taxicab Dataset to predict tip > 10%

Training
€U [# passengers |pickup loc|dropoff loc| ... | label | @ on the neighborhoods?
A TRUE
B —ALSE
C . —ALSE
D TRUE
E TRUE
= TRUE
G FALSE | | Chelsea | [ Upper West Side
H TRUE | |Upper East Side |
Tribeca || SoHo |

Validation set
11



Estimating Performance with Feedback Delays

Training

llustrative example with NYC Taxicab Dataset to predict tip > 10%

set
id

# passengers

pickup loc

dropoff loc| ...

label

TRUE

FALSE

FALSE

© Chelsea = 50%, SoHo = 80%

If we have 100 unlabeled SoHo rides &
200 Chelsea rides....

80 4+ 100
~ 0.8 X 100 + 0.5 x 200 = . = 60 %

: Chelsea J [Upper West Sidej

A
B
C
D
E
F
G
H

(Upper East Side]

iTribeca][ SoHo ]

Validation set

12



Estimating Performance with Feedback Delays

> 4
& Small space

i |
& Not predictive Bucketing strategy matters a lot!

Increasing Bucketing Strategy Representation Densities in January 2020 Taxi Data
granularity
and 0.5 -
sparsity Trip mileage (501 distinct '
values in 16 different
buckets) 0.0 -
0
Pickup location ID (256 0014 p I’ed |Ct IVENESS
distinct values in 16 different
buckets) 0.00 ; :
0 20 100 150 200 250
5.0
Combination of distance and | 95 -
pickup ID (256 buckets) — S—
0.0 - T - l
v 50 100 150 200 250
& Large S S
A4 =
. ace arsit

> < S
& More predictive? Empty buckets have no accuracy estimates P P Y
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But Data Drifts!

().74
metric

e estimated.accuracy Bucketing strategy should change when
' o rekacny data drifts!
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Importance-weighted estimated vs real accuracy on a weekly basis.
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But Data Drifts!
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from validation set D enough to result in

when serving/live data D’ has drifted
accuracy drop

e X Large memory footprint
e X Inaccurate at scale

e Importance weighting tricks dont work
between D and D

e Prior work: track divergence metrics
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Drift Detection in Pipeline Components

e Can’t we train a model to detect drift??

e Naive solution: proxy model F trained to
oredict whether d comes from D or D’

e If F(d) converges to 50% AUC, D = D’

True Positive Rate (TPR)

e Prototyped at Uber (Pan et al. 2020)

o Adversarial validation (think of F as a
discriminator)

False Positive Rate (FPR)

Di Sipio et al. 2021

e Too expensive for real-time monitoring

16


https://arxiv.org/abs/2004.03045
https://towardsdatascience.com/a-quick-guide-to-auc-roc-in-machine-learning-models-f0aedb78fbad

Detecting Drift in Real-Time

e Qur insight: incrementally fit the discriminator F(d) for real-time use

e On new prediction, sample some tuple from D or D" with p = 0.5

!

e Do forward & backward pass on the tuple

Eielak cole
e Log F’sloss over time whole
- == datasets
e e auc In memory

O . 6 - ’ 7’“’-;\..,_:? = :;_;-TL__;-__ |Og| OSS

_— —== ML model accuracy
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Breaks for many real-

world tasks & metrics

e Jasks where
subgroups are not
balancead

e Weighted metrics

(e.g., F-1)




Flexible

Python
Instrumentation

Auto-tuning,
low-overhead
computation

Minimal
information to
cover all
debugging
queries
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Instrumenting pipelines Ul
Decorators Alerts
Reusable components Dashboards

Interface Layer

Triggers to compute accuracy estimates and drift

Data integrity constraint checks

Execution Layer

Reservoir samples for streaming metric

computation Training dataset samples

Logs of data quality metrics, constraint violations, input/output summaries, etc.

Storage Layer
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Data errors = Bad ML Pertformance
Automatic and Precise Data Validation for Machine Learning (2023)

e Data errors are bad

e Models are typically trained on clean data,
so behavior is unknown on bad dato

e Data errors are especially bad for production

e A corrupted partition of data leads to:

e Bad ML predictions for that partition

e Bad ML predictions from any models
retrained on the corrupted data

20



Infinitely Many Data Errors

e We get data errors we can’t anticipate

e Ex: feature derived from an API

e num followers =
api.get num followers(user 1d)

e What if this function is broken?

We need to automatically detect when pipeline
input data is corrupted!

21



Data Validation for Machine Learning

o A data validation method takes some data quality statistic(s) and triggers an alert & if
some condition is satisfied

e What makes a good data validation system?
e Triggers alerts for corrupted data that leads to meaningful performance drop (recall)
 Doesn’t cause alert fatigue, or trigger too many false positive alerts (precision)
e Scalable
e Should handle thousands of features, many correlated

e Shouldn’t require manual tuning

22



Prior ML Data Validation Techniques

e Schema Validation (Breck et al., Data
) i ) . feature checks
Validation for Machine Learning)
num_followers = 0, int-valued
y tg pe_CheCk features viewer id foreign key
e qssert Completeness session time = 0, float-valued

e ensure values lie within a predefined

vocabulary or bounds X {num_followers: -19,

viewer_ 1d: 1021344,
session time: ..}

? {num followers: 10000000,

viewer 1d: 1021344,
session time: ..}

23



Prior ML Data Validation Techniques

e Column-level constraints feature checks
(Schelter et al., Automating

| o rge—ScoIe Datao QUOHJEQ num followers completeness =z 90%, mean € [b, 100]
Verification): A WA
* Monitor oggregote statistics session time completeness =z 90%

(e.g., mean, completeness)

e Requires engineer specification
and manual fine-tuning

24



Prior ML Data Validation lechniques

e Distributional tests

—

e Verify differences between current partition and historical
artitions >
p % 0.8}
e E.g., KL divergence, Earth-Movers Distance S e
o - |
0
e Pittalls £ 04/
=
e Always gives small p-values with a reasonable number of 3 o2}
tuples
= % 2 0 2
e Univariate X

e Can neglect temporal patterns

25



Prior ML Data Validation Techniques

Method No Manual Tuning | Handles Correlated High Precision
Needed Features and Recall
Schema validation X X >~ ¢
Monitoring aggregate statistics of
features X X X
Statistical tests v X X
GATE (our method) v v/ v

26



Why is precise data validation so hard?

weekend

Highly-Correlated Features in

| P n f
Temporal Patterns Training Datasets

27



Partition Summarization

num_ followers | viewer id |session time date
19 1021344 3.1 10/21
20 1021344 3.4
2 1021344 19 10/22
2 1021344 O 10/22
2 1021344 0.1 10/22
2 1021344 1
2 1021344 3.7 10/23
2 1021344 3.9 10/23
2 1021344 L1 10/23
2 1021344 21
5L 1021344 1 10/24
bl 1021344 2 10/24
5L 1021344 10
55 1021344 1 10/25

28
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column
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viewer id

session_time

column

medadn

standard dev

count distinct
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column
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standard dev
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Partition Summarization

e Standard Deviation
e Num Unique Values

Summary statistics:
e Completeness
e Mean

e Jop frequency
e Earth-mover’s distance

column

medadn

standard dev

count distinct

num_followers

viewer id

session_time

column mean

standard dev

count distinct

num_followers

. column
view

medadn

standard dev

count distinct

.| num follower
sessiq UM _TONOWETS

viewge—i<

column

medan

standard dev

count distinct

sessior

num_followers

view

column

medadn

standard dev

Sessiq

num_followers

viewer id

e
e

session_time

Compare partition summaries to each historical partition
summaries & run anomaly detection

29
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Adapting Existing Methods to the PS Setting

e Existing methods center around some statistic(s)

e Our adaptation
o Step 1: compute this statistic Q at the partition granularity for each feature
o Step 2: normalize Q across the features (via z-score)

o Step 3: alert if average Q is an outlier (e.g., 95th percentile, exceeds
threshold, etc)

e Example: completeness (fraction of non-nulls)

30



Adapting Existing Methods to the PS Setting

e Example: completeness (fraction of

non—nuHs) num followers | viewer id | session time | ... date
1Gann, | 1021344 3.1 10/21
» Step 1: compute completeness per 2Z=2.0 | 10213uk 34
column per partition zr— 1021344 19 10/22
D7=1 10213414 Null 10/22
e Step 2: normalize across features Nall Null 0- 10/22
D1 10213414 Null
e Step 3: average normalized o1 Null 37 10/23
completeness score across all columns NZ=l [z =... avg(z)
oer partition (1 score per partition) S S S 10/23
D1 1021344 21

e Alerting: if a partition’s average score
>= threshold

31



GATE: Partition Summarization + Decorrelation

e Adapted several data validation methods, but they still had false positives
because of correlated feature columns

feature | pp | 0 | ... : pra— e 0.4 0.6 0.8
f1 - : . : |//0 e = \\ |/. .' o \\\ l l ( : \ ( : \ / . \
£2 el —p- A | ; . ;
. - n - - 4 = ~0.4 —0.7 —0.9
. i G Go = 1 . . :
= : i < )’ completeness 0.3 : : : . P 1
o i ‘ . . . . eature | completeness | ...
: = — o: 0.3 o ’ ’ : i f2 6.5
_ommme . . N . X
B : G ..." ) . ’g # unique vals: 2.2 0.6 0.2 0.4 ; .
: ‘ : ‘ : ‘ : I . // s top frequency: -1.3 S B N
e . ' 4 iy Wass-1:  -1.3 | | L
- - t—3 t—2 t—1
Partition : Decorrelation Anomaly Matrix Creation Alert Generation : Feature Drill-Down
Summarization . (Inter-feature validation) (Intra-feature validation) (Temporal validation) i (Debugging)
O e e S I e e e e e e SO e e e e e e I I e e e =

Reduce false positive
alerts on data errors by
clustering correlated
features

32



Empirical Study

e Datasets: 2 months of Instagram ML pipeline input datasets
e Jens of thousands of feature columns

e Different levels of data quality corruptions (labeled by on-call ML
engineers)

e Methods: adapted baselines to the PS setting & GATE

e Evaluation: measuring precision @ 20% recall

33



Empirical Study

o 2.1x average improvement in

Metric = Precision(@0.9 Metric = Average Precision

precision@0.7 =
08 m— Wasscrstein | &th:::;.?p)
e ~2 orders of magnitude faster than 2- = e

0.6

sample statistical tests

Score

0.4

e <1second for a partition of 10k features
on average

e \Works well when there are low data o | i

1 2 2

CO r- r u ptiO n rO teS (< 3 O%) Failure Level Failure Level

Takeaway: GATE precisely and automatically detects ML pipeline input data errors

https://github.com/dmdml/gate

34


https://github.com/dm4ml/gate
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— 3. Assertions for |
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Monitoring LLM Response Quality is Haro

Work in Progress

e Most peop\e muddle their way “We have ground truth
to 0 deploged || M pipe”ne guidance, not labels. It takes a
: human to see if a response is
without a clear sense of 00d.”

progress and how well the
pipeline might do in production

e Many of our tricks for

“In traditional ML, you have

monitoring tabuss e e sy statistics to optimize for. But now |
eosi\g a pp‘g here don’t know how to optimize for vibes; |
X don’t know how to optimize for

- - vibes”
e Accuracy and "‘good” are poorly

defined for free-form responses

36



SPADE #: System for Prompt Analysis and Delta-Based Evaluation

e How can we automatically

suggest assertions for
developers to run on all their
prompts & responses?

e We learn from prompt version

history to identify what's
important to the engineer and
what LLMs are uniquely baa
at

Version

Prompt Template

Suggest b apparel items to wear to {event}.
Return your answer as a Python list of strings.

A client ({client_genders}) wants to be styled
for {event}. Suggest 5 apparel items

for {client pronoun} to wear. Return your
answer as a Python list of strings.

A client ({client genders}) wants to be styled
for {event}. Suggest 5 apparel items

for {client_pronoun} to wear. For wedding-
related events, don’t suggest any white
items unless the client explicitly states that
they want to be styled for their wedding.
Return your answer as a python list of strings

37




SPADE & Taxonomy

e SPADE first finds the diffs between consecutive prompt versions, i.e., any new instructions that
didn’t exist in the earlier version

e For each statement in the diff, SPADE categorizes this delta according to our taxonomy

Category

Example Addition or Edit to a Prompt

Evaluation Idea

Response Format
Instruction

“Return your answer as a Python dictionary”

Verify LLM response can be parsed
correctly

Example
Demonstration

“Here is an example question and response: Question: What should | wear to a
workout class? Answer: {“tops”: “black moisture-wicking tank top”, “shoes™: “black
Nike Pegasus...”

Infer detailed structure from example
(e.g., specific keys, headers) and
verify this in responses

Prompt
Clarification

“Return-Give me a descriptive list”

N/A (as long as the meaning of the
prompt is unchanged)

Workflow
Description

“First, identify the dress code of the event. Then...”

Check that the LLM response
matches a dress code

Data Integration

“The user does not like {dislikes_placeholder}”

N/A

Prompt Edits
Structural Content-Based
Response Format Example Workflow .
Instruction Demonstration Description Data Integration

Prompt B Quantity Inclusion
Clarification Instruction Instruction
Exclusion Qualitative

Instruction Criteria

Quantity | “The outfit must have at least 3 items” Assert that the response satisfies the
Instruction count

Inclusion | “Make sure your outfit is complete, i.e., it includes a top, shoe, and lower-body Assert specific phrases or keywords
Instruction | garment” are included from responses

Exclusion | “Do not suggest sneakers for wedding-related events” Assert specific phrases or keywords
Instruction are excluded from responses

Qualitative Criteria

“Include a statement piece in your suggestion”

Create a “scorecard” to ask an LLM
or expert to evaluate

38




SPADE & Function Generation

e Based on the categories tagged, SPADE uses GPT-4 to generate predicates to monitor

# Needs LLM: False
def check excludes white wedding(prompt: str, response: str) -> bool:

This function checks if the response does not include white items for wedding-related events,
tinllesstexplicitly: stated by the clienEr

# Check if event is wedding-related

1 fi swedding: ith prompi . loweElGcincliRsmy@vecldibnGg: neot In pEompEs towWelrE s
# Check if the response includes the word "white"
EFeturErn white neERlintsesvyense Bieower( |

else:
return Eiete

e Depending on how many prompt versions exist, 10s or even 100s of predicates get generated! &

39



SPADE # Pipeline

e Pruning the assertions generated is hard because there usually isn't a big dataset
of examples (i.e., prompt-response pairs)

o |t's like trying to find functional dependencies: if assertion A -> B then drop B

Prune assertions
« Stay within FPR

m line in diff with /=l Python assertions ,

W#{ our taxonomy .\ for delta types J « Maoximize coverage
« 9 types in taxonomy (2 found * Minimize functions
types don’t give evals) « Evals return True or * Beam search
Enlee algorithm
« Evals can include
T ask _lim™ call

4O
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Summary and Looking Ahead

e |tis agreattime to be working on data management for ML!

e We only focused on deployment ¢ monitoring, but there are many
opportunities to improve ML engineering workflows and lower the barrier to
entry for ML

e shreyashankar@berkeley.edu
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