Predictive Modeling: A Retrospective
Shreya Shankar

Jaunary 8, 2021

Introduction

“If I ever write a book before the age of 30, never talk to me again,” I
vaguely remember telling my friend something along these lines. But
I am much younger than 30 and not yet ready to lose my friends. In
no way is this meant to be a book.

There is merit to writing prose though, regardless of how young or
old a person is. I find that it’s helped me think critically about who I
am and who I want to be as a programmer. Writing has always been
a tool to manage my larger-than-average intensity of emotions. I am
impressed by my technical peers and colleagues who seem to always
make it through challenging work sprints in an enviably normal way.
I feel like I scrape by.

I am quite an “emotional” programmer." It’s not like I throw
tantrums while programming; I just feel strongly when I write code,
see my results, and debug. Predictive modeling? as a discipline lends
itself well to strong emotions — errors are often silent, projects often
do not make it to production, intuition often trumps theoretical un-
derstanding, and more. As a result, my relationship with this field is
somewhat complicated.

This essay is personal. It is a narrative about my experiences in
and relationship with predictive modeling. It is a testament to the
years I have spent banging my head against walls to derive value
from predictive models. I am writing this more for therapeutic pur-
poses than to share any great insights; in this, I do not intend to
prescribe advice, and you will find many stories of embarrassing
technical failures.3 I hope you read this with a nonjudgmental frame
of mind.

Childhood

I took my first algebra course in 7th grade. I do not remember much
about the day-to-day experiences other than my bright pink TI-84
Plus Platinum Gold Silver Bronze 2.0 edition and Mrs. Park’s “pri-
vacy fences” made of manilla folders that you could very obviously
still look over and cheat if you wanted to. I played Block Dude on the
graphing calculator a lot in that class.

One fine day, I decided I was done playing Block Dude. It both-
ered me that I did not know how to use many of the functionalities

I pay most attention to giddiness and
dread. For example, when a system
design change improves latency, I grin
happily and do a victory dance in my
head. On the other hand, when I have
to search for and read through multiple
log files, my brain plays a “power off”
sound and I immediately check social
media to procrastinate.

21 try not to use the catch-all phrase
“data science” because there are both
forecasting and analysis components

to the field. This article has a nice
overview. In my essay, I talk primarily
about the predictive modeling aspect of
data science.

3 My intended audience is wide, includ-
ing but not limited to:

e ML researchers who are curious
about what applied ML is like

* ML practitioners who might appre-
ciate consolation that they aren’t the
only ones making mistakes

* People generally curious about what
it’s like to work in applied ML

¢ Students or people interested in
pursuing ML or data science careers

https://medium.com/@jamesdensmore/there-are-two-types-of-data-scientists-and-two-types-of-problems-to-solve-a149a0148e64

PREDICTIVE MODELING: A RETROSPECTIVE 2

on that calculator; the fanciest thing I could do was graph an equa-
tion of the form y = mx + b. 4 I stumbled across the LinReg(ax+b)
feature and was instantly fascinated; if you entered a handful of data
points, the calculator would find the line of best fit and give you a
formula for the y value corresponding to any new x value! “This is
called extrapolation,” Mrs. Park said.

I took this extrapolation phenomenon and eagerly applied it to
many aspects of my life. I constructed tuples of my previous 100
yard breaststroke times of the form (time, age) and input these into
LinReg. How fast will I be when I am 16.23 years old? 1 wondered. The
LinReg formula yielded 65 seconds, or a 1:05. Impressive. > Only
many years later did I learn that the algorithm is not LinReg; it is
something called linear regression.

Had I zoomed out on the graph, I would have noticed that the
predicted times were negative after I hit 25 years old. But I was naive;
I trusted my results as soon as I saw them.

Facebook

The summer after my freshman year, I interned at Google Street
View. I spent more time in the Bgo gym than my desk. I should have
learned from this software engineering internship that I didn’t like
software engineering at a large company, but I apparently needed to
repeat this experience to fully get it. At Facebook the following sum-
mer, my manager assigned me a full-stack project that I completed in
6 weeks but slowly released over the months so I would not have to
do more software engineering.®

I am grateful for my manager at Facebook who noticed I finished
early and told me that it’s okay to not want to do another engineer-
ing project. At his suggestion, I asked a data scientist on the team
if he had any project ideas. Fortunately, I worked on an interesting
team (Civic Engagement), the company has “massive amounts of
personal data” at their disposal, and that data scientist is awesome,
so there were many intriguing project ideas. I settled on trying to
predict whether a Facebook profile or page represents a US politician.

Armed with whatever knowledge I managed to obtain from Percy
Liang and Chris Manning in two courses” (which I had taken as part
of heavy® courseloads), I masqueraded as a data scientist for the last
few weeks of my Facebook internship.” My data science colleague
showed me how to SELECT * the data from relevant tables, randomly
split the pages and profiles into train, validation, and test sets, and
write a job to train and evaluate gradient-boosted decision trees.
Facebook’s infrastructure did the hyperparameter search; I literally
only had to write a few lines of Python.

4] think this concern is common among
my friends who also took many sys-
tems courses. For a while, I felt more
comfortable programming in C because
I actually knew most of the language

at the time. When my day-to-day con-
sisted of more machine learning, I
realized that proficiency in a language
is how comfortable you feel imple-
menting an idea in that language, not
necessarily how much of the language
you know.

5 I never achieved this time.

6] am a hare, not a tortoise. I sprint,
then rest, then sprint, then rest. Strong
emotions motivate me to either finish
first or not work at all.

7 Stanford’s CS221 in Autumn 2016 and
CS224N in Winter 2017

81 took 22 units a quarter that year.
Really stupid in hindsight.

91 didn’t know what SQL was, let alone
whether to pronounce it as “sequel” or
“S-Q-L.” Thankfully my data science
colleague worked in a different office,
so we communicated mainly over
Messenger.

PREDICTIVE MODELING: A RETROSPECTIVE 3

Thinking back to this time, it’s incredible that I could train models
and not need to know about Hive, whether the data could fit in one
machine’s memory, anything about ETL or data pipelining, how
config files were parsed, how jobs were scheduled, how machines
magically had relevant dependencies installed, and more. I didn’t
even have to call model.fit() or know how decision trees work! I
only needed to write my SELECT =, specify the fraction of data to
allocate to train/validation/test splits, and indicate the type of model
I wanted to train (GBDT). I can’t claim that I was a curious intern and
wanted to understand how all of this infrastructure came about; all I
cared about was the results of the GBDT on my test set.

For work I am just running pipelines and finding features.

Figure 1: Journal entry for August 24,
Since the infrastructure was nicely abstracted away from me, the 2017
biggest tool I had to improve the model was feature engineering (see
figure 1). “We should train neural networks on profile text descrip-
tions!” I excitedly suggested this feature to my data science coworker.
I really hope he chuckled to himself at my total ineptitude before he
kindly suggested we start with simpler feature ideas. Age, number of
friends or followers, number of recent posts. I threw dozens of these
simple features at the model and quickly became frustrated that I
was getting diminishing returns.

My data science colleague did not seem fazed. He suggested a
few more features — a binary indicator representing whether that
person has a spouse and the ratio of number of followers to num-
ber of fans (people that “like” the page). These features had much
greater importance in the trained model, and the trained model’s ac-
curacy boosted significantly. From this, I realized that good feature
engineering is not about the quantity of feature ideas; it is about the
quality of feature ideas. You want to come up with discriminative fea-
tures, or features that have unique values for each class of data points.
For example, number of fans alone may not be a good feature, since
celebrity pages also have many fans. The ratio of number of followers
to number of fans seemed was a better feature — I suppose people are
more likely to follow and not “like” their politician’s page than some
celebrity’s page.

The internship ended, and I gave a final presentation on the accu-
racy, precision, and recall scores obtained from various experiments
and important features. I remember leaving feeling like I would miss
my coworkers (see figure 2) and like I did something cool, that I did
“real data science”. I loved the rush of excitement I'd feel when an
experiment produced “good” results or when one quality feature

PREDICTIVE MODELING: A RETROSPECTIVE

proved to be more valuable than hundreds of useless features. Data
science experimentation brought out high-variance, high-intensity
emotions in me. I was addicted.

I feel terrible now. I just left Facebook. We took pictures. This experience was definitely
so much better than last summer, but that means it’s incredibly difficult to leave. I learned
so much from everyone. I feel like I have left a summer camp, but a camp where I learned A TON.
Literally. I had so much personal and career growth this summer, unparalleled anywhere else. I
feel like every season I gain 2x the experience of last season. My growth is really catapulting.
It’'s exciting to be a part of it. I loved the team. 12/10 experience.

I want to be a data scientist activist when I grow up. I want to use data to inform my activism.
To do this I probably also need to take psych 1.

4

Figure 2: Journal entry for September 8,

But I wish I had asked more questions in this experience. Why 7

did I feel so accomplished after a data science project that I didn’t
productionize? Why didn’t I strive to make my work useful? What
precision and recall scores were good enough to be considered use-
ful? How would I actually use the model to label Facebook profiles
and pages? I suppose I should forgive myself for not thinking about
these questions; for a student to continue work in a particular sub-
ject, it’s so important for her to associate positive emotions with their
first learning experience with respect to a particular subject. I was
lucky to enjoy predictive modeling, and I had learned some valuable
lessons from my time at Facebook — I learned to start with the low-
est hanging fruit for feature ideas, thoughtfully craft discriminative
features, and prioritize incremental iteration.

Google Brain

These days, I frequently talk about how machine learning in pro-
duction is hard. Simply building a prototype of a machine learning
model and showing that it works on a toy dataset, even if that data
was collected from the “real world,” doesn’t mean this model can
work for everyone at scale every day. I didn’t realize this when I was
at Brain, but now when I reflect, I recognize how much I learned then
about the many challenges of real-world machine learning.

I will skip the story of how I ended up as a research intern at
Google Brain as a result of dumb luck. I worked on adversarial exam-
ples and was directly supervised by two very kind, thoughtful, and
intelligent researchers. I didn’t do any machine learning work for any
product at Google; however, my mentors both deeply cared about my
personal growth and encouraged me to learn about other machine
learning projects at Brain that could sparked my interest.

https://twitter.com/seyyedreza/
During my internship, a tweet'® about biased translations from status/93529131725249331275=20

https://twitter.com/seyyedreza/status/935291317252493312?s=20
https://twitter.com/seyyedreza/status/935291317252493312?s=20

PREDICTIVE MODELING: A RETROSPECTIVE

gender-neutral languages went viral. For example, Google translated
“0 bir doktor” and “o bir hemsire” in Turkish to “he is a doctor” and
“she is a nurse” respectively in English. Fueled by my morals and
(mainly) the anger from Twitter, I internally filed a bug in Google
Translate. I suggested displaying gender-neutral pronouns when
translating from a gender-neutral language.

I have really bad productivity right now. I can’t focus. There was that tweet about Google
Translate bias, and I decided to explore it myself. I picked a genderless language, Armenian,

and translated “she is a doctor. He is a nurse” to it. Then I translated the Armenian equivalent
back to English to get “he is a doctor. She is a nurse.” She and he are the same in Armenian (no
gendered pronouns), so even deciding on a gendered pronouns when translating is inaccurate.

I was fuming when I found this out. There are two problems at stake. One is the harder problem of
bias in NLP, where the GLoVE or word2vec representations of words are inherently biased. There’s a
paper in which you can predict analogies like “doctor is to man as nurse is to blank” using GLoVE
vectors, where the blank is woman. So clearly to solve this the training data for Google’'s seq2seq
model needs to be augmented to favor underrepresented examples, but that would take forever to
implement.

However, the above is not the problem I encountered. It’'s a larger relevant problem but not the
problem I'm mad about in this moment. The problem is that Google’s neural machine translator
forces genderless pronouns to take a gender when translating. For example in Turkish, both he

" When translating “o” to English, NMT picks a gendered pronoun. Manually changing

“

and she is “o.
the probability threshold for the pronoun to pick will not work. Picking a pronoun in itself is
incorrect. Maybe a quick fix to existing NMT translations from genderless to gendered is to append
a layer to the end of the network that converts all gendered pronouns to "they" or something.

Anyways, I filed a bug to the Translate team reporting this inaccurate translation. Their
response? "Gender is an ongoing research project" and they closed the bug. What the heck. They
also linked to a "duplicate" bug about informal vs formal pronouns (like tU vs Usted, informal
and formal “you” or HTY vs JH in Hindi). This "duplicate" bug was filed 4 years ago. I get
that it’s similar in the sense that you’re trying to convert from a language that has no levels
of formality to a language that does - which is like converting from a language with no gendered
pronouns to a language with gendered pronouns. But this bug filed 4 years ago has not been fixed.
Sigh. It is also filed as a "feature request" - when it is actually an incorrect translation.

I don’'t know what to respond with to the guy who closed the bug I filed. It is a bug, not a
feature request. It has real implications. There is a simple fix to the small problem, and it
opens the door to a larger problem of learned gender biases. I don’t even know what to say anymore
- I thought Google was the standard for inclusivity within customers, and not fixing this bug or
being quick to dismiss it as a "gender problem" doesn’t help.

Figure 3: Journal entry for October 5,
Within a couple of days, the Translate team got back to me. They 2017
closed the ticket, saying they were investigating gender as an ongoing
research project. An ongoing research prjoect? 1 furiously scoffed to
myself and vented in my journal (see figure 3). How long would this
take to resolve?
In 2019, Rachel Thomas confirmed that the same bug exists on

"https://twitter.com/math_rachel/
11 . .
Google Translate.™* In April 2020, Google Al launched a pipeline status/1123354917404495872

5

https://twitter.com/math_rachel/status/1123354917404495872
https://twitter.com/math_rachel/status/1123354917404495872

PREDICTIVE MODELING: A RETROSPECTIVE 6

to account for biased outputs in gender-neutral translations™. As
shown in figure 4, Google Translate now shows two gender-specific
pronouns in the output.

Google Translate
% Text [Documents

TURKISH - DETECTED ENGLISH SPANISH FRENCH v & HINDI ENGLISH SPANISH v

0 bir doktor X Translations are gender specific. LEARN MORE. e

She is a doctor (eminine)

» 0

He is a doctor mascuine
o a0 o O

When I filed the bug, I was frustrated that no immediate action
was taken. I judgmentally and incorrectly assumed the answer was
simple. But now that I have actually worked in industry data sci-
ence, I understand that the machine learning pipeline is much more
complicated than the model itself.’3 Having visibility and a strong
command of the end-to-end technical pipeline is a complex systems
problem. Managing groups of people who have to effectively collabo-
rate on these pipelines is also a complex systems problem.

I don’t have much experience in ML bias or fairness™, but I do
now have experience shipping ML pipelines to production for clients
to observe outputs from. When a client has a concern about a bla-
tantly incorrect prediction corresponding to a certain data point, a
feeling of dread washes over me. If the data point’s feature values are
within “common-sense” bounds (for example, age — a numeric fea-
ture — should be nonnegative), how do I possibly rationalize why the
model’s predicted output deviated significantly from the true label?
Does this mispredicted example point to a larger phenomenon — poor
performance for a certain subpopulation or addition of a new sub-
population that the model wasn’t aware of — or do I just throw my
hands in the air because models are imperfect and will sometimes
make mistakes? And when I choose to throw my hands in the air,
how do I explain why I made this choice to a bunch of people who
weren’t trained in machine learning but (understandably) expect ML
pipelines to work like traditional software pipelines?

Stanford

Many people dream about attending Stanford. I feel so lucky to have
lived this dream. I loved the intellectual vibrancy in and out of the
classroom, the people, the quirky events, my teachers, the weather —

2 https://ai.

googleblog.com/2020/04/
a-scalable-approach-to-reducing-gender.
html

Figure 4: Turkish to English translation
given by Google Translate in October
2020.

3 Once we deploy a model, we struggle
to “fix” bugs. For example, if model
outputs are “biased,” we jump to
conclusions about how to “fix the
bias” and patch it up as quickly as
possible. Oftentimes this doesn’t solve
the core problem, which is usually
bigger than just one misclassified
output. In the particular example with
“biased” outputs, the ML pipeline is
developed and used in a way such that
it systematically performs worse for
certain subpopulations or subgroups in
the data.

* There are many inspiring researchers
doing great research in these areas.

https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html
https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html
https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html
https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html

PREDICTIVE MODELING: A RETROSPECTIVE 7

the list is endless.">

I did not take too many machine learning or artificial intelligence
courses in the latter half of my undergrad. After my Google Brain
internship, I realized I wanted to become a better programmer, and
I believed the best way to improve my programming skills was to
write a lot of code. So I took operating systems, databases, compilers,
and some other systems courses, and I somehow graduated from the
systems track in Stanford Computer Science.®

I distinctly remember one machine learning course — deep rein-
forcement learning — in my junior year. At the time, I was also taking
operating systems and strapped for time (see figure 5). For the RL
final project, my group chose to implement an algorithm from an
existing deep RL paper on a different dataset.’” We were not able
to replicate the paper’s results or get the algorithm to work on our
dataset. I even worked off a fork of the code released with the paper.

> Sometimes I forget that I live in San
Francisco. Stanford was my home for so
long.

11t is still a surreal feeling to have
degree(s) from Stanford CS. I struggled
through college. I genuinely did not
believe I would make it.

7 I will not name this paper, but it
came from established authors from a
reputable institution.

I'm getting worried that I have no idea what I want to do post graduation. Startup? Grad school?
Software engineering? It’'s crazy; I don’'t know. Maybe software engineering for a tiny company
where I can find good mentors? I'm not sure. Some days I feel as if the world is my oyster; other
days I feel as if there is only one path to success and I'm not even sure if I'm on it. I feel
less confident about what I want to do post graduation than I was freshman year. It’s crazy. But
maybe that’s because I have so many opportunities, way more than I knew existed back then.

I am so behind in all my work. I have not made too much progress in 0S, which sucks. There is
a lot of debugging left. I have to implement 4 new syscalls. Even the last assignment sucked -
I tried to implement the frame table for user virtual memory but page faulted on the main kernel
thread and spent days debugging this. I really really cannot deal with systems. This is by far

the most time-consuming class I’'ve been in.

My group also hasn’t even started the RL project. I also have a multiple choice quiz and the DQN

assignment I have not started for that class.

Not knowing what to do, like many students who take Stanford
Al Lab courses, I cherry-picked some good samples generated by the
model to take up as much poster real estate as possible. My group
mate added a large beautiful Q-learning diagram hastily made in
Google Slides, not TikZ. The poster had at least 6 distinct colors. We
got all the points.

Turns out we were not the only ones who slid our terrible results
under the doormat before inviting others to our poster. During the
poster session in the Tresidder Oak Lounge, my friend surveyed
presenters in half of the room to find that 70% of the projects did not
work, even though the posters indicated otherwise. People had all
sorts of clever strategies to make good posters. One poster zoomed
into a monotonically decreasing part of the loss curve instead of
showing the full curve.’® In another presentation, raw samples from

Figure 5: Journal entry for March 5,
2018

8 When plotting loss over epoch or
iteration, the y-axis scale can be mean-
ingless if you don’t have full familiarity
of the data and training algorithm. You
really only care that the loss decreases
over time. It's more relevant to see a
graph of the test set metric, such as
accuracy, vs iteration.

https://twitter.com/sh_reya/status/1116774878508568576?lang=en
https://twitter.com/sh_reya/status/1116774878508568576?lang=en

PREDICTIVE MODELING: A RETROSPECTIVE

the dataset covered at least a third of the poster. As usual, a large

copy of the LSTM image from Chris Olah’s iconic Understanding

LSTM Networks 9 inevitably made its way to a handful of posters.
Now that I have my degree and Stanford (hopefully) cannot re-

voke it, I'm curious why this kind of culture exists in these Al classes.

What are we trying to hide? Why are we trying to hide that it’s hard
to pursue deep learning ideas that work? Are we in denial that deep
learning doesn’t always work? Or are we just trying to get good
grades? These classes have hundreds of students, eager for their deep
neural networks to give them cool results. If left unchecked, such
classes become divorced from reality and ladled with the expectation
that most projects are cool and magically work. Students end up go-
ing into industry with an unhealthy dose of Al Saviorism.>* Their
industry data science projects fail. We all become disillusioned.

Modeling ideas that don’t work are not anomalies. They are nor-
mal. The point of a class project is to try new things and learn, not
produce “working” models. I wonder what the culture would be like
if project TAs and course staff repeatedly communicated this to their
students.

Viaduct

After finishing my undergrad, I joined Viaduct," a startup that
builds ML pipelines for vehicle OEMs,** as the first ML engineer.?3 I
concurrently spent about a year finishing my computer science mas-
ters degree.>* Since my masters degree was also in computer science
(concentration in artificial intelligence), I had the lovely pleasure of
simultaneously building simple models in industry to make money
and faking complicated models in academia to get a degree.

Viaduct currently has production-running ML products, but when
I'joined Viaduct, we had no product. We had the leadership team,
two kickass engineers, a data scientist who knew more about cars
than the rest of us combined, and me.?> As an ML engineer, I spent
a lot of time doing both software engineering and data science, but
in this essay I will speak only about my data science experiences. I do
not talk about the following:

® Issues that arise from promoting models to production
¢ ML infrastructure

¢ Application performance tuning

»9 Chris Olah. Understand-

ing Istms, Aug 2015. URL
https://colah.github.io/posts/
2015-08-Understanding-LSTMs/

2 https://www.shreya-shankar.com/
ai-saviorism

*https://www.viaduct.ai

*? Original Equipment Manufacturer

» I have a blog post describing the
reasons I chose to work at a startup.

2 Stanford has a coterminal masters
program for undergrads; you typically
spend 5 years and get both a BS and
MS.

5 In many applied Al companies
though, the team itself can be the
product. This can be confirmed during
the acqui-hire they eventually go
through. Viaduct is cool because it
does not have this ambition to get
acqui-hired; they are building things to
deliver value.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.shreya-shankar.com/ai-saviorism
https://www.shreya-shankar.com/ai-saviorism
https://www.viaduct.ai
https://www.shreya-shankar.com/new-grad-advice

PREDICTIVE MODELING: A RETROSPECTIVE

"Just do something interesting with the data”

I had way too much agency for my first ML project at Viaduct. The
task was to use ML to do “something interesting.” In hindsight, this

is not a good task definition because ML is only a tool — the emphasis

should be on finding a business-relevant problem to solve. But at
the time, our only paying client didn’t care too much about what we
built; they just gave us a year of sensor data from a set of vehicles for
us to play around with. I'm not even sure if they expected anything.
It was probably some R&D project for them.

An engineer colleague helped me set up AWS CLI on my work
computer and showed me an S3 path pointing to where the client

data lived. The path matched the pattern s3://scratch-etl-{something}/*.

“What's ETL?” I asked him. He happily explained the extract-
transform-load 2 data paradigm to me.?7 1 did not know what S3
was, but I had heard of data “buckets” before.?® The engineers had
written some library functions built on boto3 to connect to the rele-
vant data, and these functions (as well as seemingly everything else
they wrote) worked well out-of-the-box. Now all I had to do was
write a Python script to “do something interesting.”

My boss guided me towards something potentially interesting:
what did an “anomalous” drive mean and look like? If a good model
believed sensor data for a drive was sufficiently different than what
it had seen for that car in the past, maybe the vehicle owner would
like to be alerted. I treated this project like any ML project I had
worked on in the past — first I read some papers about deep learning-
based anomaly detection methods. Next, I preprocessed the data
by selecting numerical features and normalizing them. Then, I used
TensorFlow to write a small autoencoder with only fully connected
layers that minimized the mean squared error *9 (MSE). Finally, I
kicked off the script to train a model, only to find that my CPU took
forever for one epoch to train.

It had been a week, and I had no results to show!3° Frustrated, I
asked the engineers if I could train my model on a GPU. I imagined
there was some virtual machine I could SSH into, scp my project
files over, and run the code. My coworker patiently explained to me
that this was not the case; this is not the case at most companies. “If
you want to deploy your training job on a machine with a GPU, you
can use Argo,3" which helps us create workflows on Kubernetes,”
he told me. He showed me a template workflow he had written for
deployment on the GPU cluster and how to use this template for my
job.32

The training job finished, and I got similar train and validation
split MSEs. That seemed like a good sign; I was not overfitting. The

26 Wikipedia contributors. Extract,
transform, load — Wikipedia, the
free encyclopedia, 2021. URL https:
//en.wikipedia.org/w/index.php?
title=Extract, _transform,_load&
01did=998138895. [Online; accessed
5-January-2021]

7 He is too nice to have gone back to
his desk wondering what kind of first
ML engineer hire doesn’t know what
ETL is.

#1 imagine there are gigantic buckets
sitting in fields in the middle of Oregon
or wherever US-West clusters are
located. Like windmills, massive and
spaced apart, only instead of rotating
fans, the buckets contain large amounts
of os and 1s.

2 Wikipedia contributors. Mean
squared error — Wikipedia, the free
encyclopedia, 2020. URL https://en.
wikipedia.org/w/index.php?title=
Mean_squared_error&oldid=995577263.
[Online; accessed 5-January-2021]

3 It might sound silly to expect any
new employee to produce something in
a week, but I was used to completing
projects quickly from the Al classes I
had taken.

3 https://argoproj.github.io

32T had never used containers or Ku-
bernetes before. Viaduct exposed me to
this whole new world of infrastructure.

https://en.wikipedia.org/w/index.php?title=Extract,_transform,_load&oldid=998138895
https://en.wikipedia.org/w/index.php?title=Extract,_transform,_load&oldid=998138895
https://en.wikipedia.org/w/index.php?title=Extract,_transform,_load&oldid=998138895
https://en.wikipedia.org/w/index.php?title=Extract,_transform,_load&oldid=998138895
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=995577263
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=995577263
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=995577263
https://argoproj.github.io

PREDICTIVE MODELING: A RETROSPECTIVE 10

next natural step to me was improving the model. My data science
colleague had mentioned he was using temporal convolutional net-
works 33 (TCNs) in his project, and I was curious to see if TCNs
would boost my results. Sure enough, the validation MSE dropped,
and I excitedly reported to my coworkers that something worked.

Todo: write an autoencoder that...works? Lol

But did it really work? I didn’t know what to make of an MSE of
0.1. What this “good enough?” For what purpose? Businesses care
about metrics in terms of dollars, not raw MSE values. Fortunately
or unfortunately, I let go of this project the next day to focus more
important project.

Personalization tools

My next project goal was to identify drivers’ home and workplace
locations based only on de-identified vehicle sensor information for
drivers who had opted in to a specific program that we had part-
nered with. In hindsight, this project also did not seem to have a
clear map from model accuracy to dollars saved. However, I was still
high on the new freedom and flexibility gained from working at a
very small early-stage tech startup.

I charged forward with my TensorFlow scripts and newfound
matplotlib prowess to apply deep learning methods for clustering.
However, once the model output its results, I struggled to validate
them. For a handful of vehicle IDs, I entered their most prominent
cluster latitudes and longitudes into Google Maps. I clicked on the
satellite view. Could I see a house? After finding that the first 10
vehicle IDs’ top clusters pointed to the middle of highways, I deter-
mined that my model was useless.

What next? Finally, I decided to try something other than deep
learning.34 T used scikit-learn to fit DBSCAN 35 to the data and
went through a similar process to validate the top clusters. At least
this time around, 4 of the 10 clusters pointed to actual homes. But
I was assuming that the largest cluster corresponded to a person’s
home, which might be incorrect for some people. I also would have
to figure out how to identify workplace locations.

Then I implemented the stupidest algorithm I could think of:
identify the most frequent location for each vehicle at 2AM. Again, I
checked each location in Google Maps. 10 out of the first 10 locations
pointed to homes. I checked around 50 locations, and only 3 or 4
did not point to homes. I didn’t know whether to feel depressed or
excited.3°

33 Colin Lea, René Vidal, Austin Reiter,
and Gregory D. Hager. Temporal
convolutional networks: A unified
approach to action segmentation.
CoRR, abs/1608.08242, 2016. URL
http://arxiv.org/abs/1608.08242

Figure 6: Journal entry for July 11, 2019

31 don’t know why I was so obsessed
with trying to make deep learning
work. Good problem-solving is about
finding the simplest solution that meets
the requirements.

35 Martin Ester, Hans-Peter Kriegel, Jorg
Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters
in large spatial databases with noise.

In Proceedings of the Second International
Conference on Knowledge Discovery and
Data Mining, KDD’96, page 226-231.
AAAI Press, 1996

3T think my AI Saviorism began to
break down around this time. I felt
some tension that I wasn’t learning any-
thing new in ML, since I had to resort
to simple methods. But I was learning
things, practical things, relevant things.
I was learning about what actually
delivered value in the “real world.”

http://arxiv.org/abs/1608.08242

PREDICTIVE MODELING: A RETROSPECTIVE 11

Data cleaning

For the last 14 months or so, I've worked primarily on predictive
maintenance for clients. The problem is roughly: for a given com-
ponent in a vehicle, what is the probability of failure in the next
month?37 Predictive modeling on time series data at scale is really,
really hard.

In my first few data science projects at Viaduct, the “raw data”
that clients had given us was actually cleaned by their data scientists.
I did not know this at the time; I never thought to ask. One day, we
got a new client — they went through our standard procedure to give
us access to their “raw data”, and an engineer coworker gave me the
relevant paths. I quickly coded up some deep learning architecture to
minimize binary cross-entropy loss. The precision and recall scores
were atrocious, worse than random guessing.3® Without investigating
much further, I attributed the issue to deep learning problems. It was
not because of deep learning,3% but I am nonetheless glad I came
to that incorrect conclusion, otherwise I would never have made a
commitment to stay away from deep learning unless deep learning
was absolutely necessary to solve the problem.

When logistic regression did not produce results, I finally in-
spected the data.*° I was shocked, or “shook” as a good Gen-Z per-
son would say, to find vehicles that had driven over a billion miles.
Some vehicles had used a negative number of gallons of gasoline in
the last few months. The data clearly had errors, and I was excited to
find some low-hanging fruit that could improve the models.

In our first pass of data cleaning, we hardcoded lower and upper
bounds for prominent sensors. However, some clients had given us
access to data from over 100 sensors, and I, who did not know a sin-
gle thing about cars, had no idea what some of the sensors measured.
How was I supposed to figure out what an “outlier” meant? I used
equation (1) to define “outliers” by identifying loose bounds for each
feature.

.50 £ A (.99 —1.01) (1)

where:

1p = p * 100th percentile in the distribution#*
A = some multiplier, 5 or 10 in my case

The first time I generated the bounds, I clamped outliers, or set
them equal to the nearest bound. However, many times these bounds
themselves were nonsensically valued — for example, some vehicles
had 10 million miles instead of 1 billion miles. Since this was time
series data, a coworker explained that I could break down “bad data

%7 Month is an arbitrary unit of time
here; different clients care about differ-
ent windows of time.

3% Sometimes modeling — deep learning,
particularly — is especially frustrating
to me because most of my failures are
silent. My code passes through the
compiler fine. I hardly get runtime
errors. I usually know something is
wrong because my results are awful,
and I don’t know where to begin
debugging. This realization gave

me a new appreciation for software
engineering, since my code usually only
executes successfully if and only if I
have no errors.

3 Until this point, I had normalized

my data by subtracting the mean and
dividing by the standard deviation.

But in the “real world,” data is not
necessarily normally distributed. I
switched to min-max scaling and got
better results.

4 This is the first thing any data scien-
tist should do. I can take comfort in the
fact that I was hired as an engineer, not
a data scientist. It is okay that I didn’t
know how to be a great data scientist in
my first few months after undergrad.

PREDICTIVE MODELING: A RETROSPECTIVE

points” into two categories: outliers that should be clamped, and
outliers that should be treated like “missing” data points or forward-
filled with clean values. I removed the clamping logic and set the
outliers to null in upstream tables. I automated this logic as part of a
data cleaning pipeline.

About 8 months later, I found a large number of vehicles with a
bunch of null-valued number of engine revolutions. Turns out that
tight bounds need to become looser over time! The total number of
miles driven will increase! The total number of engine revolutions
will increase! I reran the outlier analysis on raw sensor data to pro-
duce updated bounds. But the models we had running in production
were trained on sensor data within tighter bounds. What models did
I need to retrain? Whose models did I need to retrain? I found dread
creeping into my body again — one small change upstream can have
hundreds of silent negative downstream impacts.

I once used the label as a feature

The subheading says it all. It is quite embarrassing.

Once, a client sent us an email, asking us to train models for a
different component before the next day. Since this was a different
prediction task, I had to write new code to generate new labels to
add to our feature table. I ran my old modeling code, which essen-
tially did the following:

df = load_data(...)
feature_columns = list(df.columns).copy()
feature_columns.drop(’days_until_failure’)

Other code

Preprocess data and train model
X = df[feature_columns]
y = convert_to_label(df[’'days_until_failure’])

Pressed for time, I scrolled to the bottom of the file, changed the
line
y = convert_to_label(df[’'days_until_failure’])

to
4 The labels were actually named
y = convert_to_label(df[’new_days_until_failure’]) in a more descriptive way; I just
use days_until_failure and
new_days_until failure to avoid

and quickly ran the offline training and evaluation jobs.#* The met- disclosing relevant business details.

12

PREDICTIVE MODELING: A RETROSPECTIVE 13

rics were not perfect, because there is a nontrivial transformation
computed in the convert_to_label function. But still, obviously this
gave me great results, and I reported them to the client.

The next day, due to dumb luck and sheer curiosity, I decided to
inspect this particular model. What were its top features? I looked
into SHAP 43 results and was horrified to find that the top feature
was new_days_until_failure. How could I have been so stupid?

I always believe that when you make a mistake, you should let
everyone know as soon as you find out. So I told my colleagues,
expecting them to also be horrified. I think they were, but they forgot
about it soon afterwards because they had many other things to do.
The client also conveniently forgot about this request.#* So it ended
up being okay, but I was determined to never make this mistake
again.

“A more robust solution to avoid this mistake is to require whitelist-
ing of features,” my colleague mentioned. I totally agree. He modi-
fied our modeling APIs to require a list of feature names as a pa-
rameter. It might be more tedious for a data scientist to explicitly list
hundreds or thousands of column names as features they want to
use, but at least with this solution, they are much less likely to use
the label as a feature.

Different modes of experimentation

Over the years, I learned that I have two different “modes” of data
science. In one state or version of myself, I'm experimenting as
quickly as possible. I have a list of ideas, all of which can be tested
with few-line code changes, and I come up with more questions and
ideas every time I cross something off on that list of ideas. I can ex-
periment endlessly in this mode. I load a subset of data into a Jupyter
notebook and hackily mess around to learn more about what’s going
on. Maybe I add features or change the model or change the data. I
just want to get feedback quickly, and fast feedback is so important to
feel productive while iterating on ideas.

This mode can impress other people, but there is a dead end. Be-
cause I care so much about iterating quickly in this mode, I care very
little about reproducibility. It is a skill I've developed over imple-
menting hundreds of data science project ideas. But to make a data
science project useful, you need to also be able to reproduce results
of any experiment you run. Endless Jupyter experimentation is not
reproducible. For a basic example, consider the following code in a
notebook format:

Cell 1: imports
import random

4 Scott M. Lundberg, Gabriel Erion,
Hugh Chen, Alex DeGrave, Jordan M.
Prutkin, Bala Nair, Ronit Katz, Jonathan
Himmelfarb, Nisha Bansal, and Su-

In Lee. From local explanations to
global understanding with explainable
ai for trees. Nature Machine Intel-
ligence, 2(1):56-67, Jan 2020. ISSN
2522-5839. DOI: 10.1038/542256-019-
0138-9. URL https://doi.org/10.
1038/s42256-019-0138-9

#] suppose when clients make hasty
requests that aren’t in the specified
deliverables, they don’t care too much.
But I cared so deeply; I was so wor-
ried that this reflected poorly on my
competence.

https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9

PREDICTIVE MODELING: A RETROSPECTIVE 14

Cell 2: set seed
random.seed(0)

Cell 3: generate random number and do other things
num = random.randint(0, 10)

I would probably only run cells 1 and 2 once, as soon as I opened
the notebook and started the kernel. The first time I run cell 3, num
will be set to 6, and other relevant code will execute. Suppose 1
change the other code and want to rerun cell 3. The value of num
changes! Even genuine attempts to ensure reproducibility, like setting
a random seed, can get lost, mainly because the graph of computa-
tion performed in “endless experimentation mode” can be different
from the graph of computation performed if you run the cells once,
top to bottom. As Joel Grus says, “notebooks have tons and tons of
hidden state that’s easy to screw up and difficult to reason about.”4>
People across the world of various skill levels have mixed strong
opinions on notebooks. Notebooks are probably not going away, even
if they have problems.4®

So I learned the second mode, the slow mode, when I needed to
show results to other people. I deploy the pipeline with the DAG
scheduler, version everything — data, model, code, artifacts, you name
it — and see if I can replicate results multiple times through cross
validation. I never trust my results or communicate them to someone
else until I've seen results of the second mode. I am rigorous in this
mode; I put my software engineering hat on and get to work. It is
tedious, but if there is anything I have learned about data science, it
is that I need to be disciplined and patient in order to repeatedly reap
the benefits of this sorcery.

I learned Spark

Good data scientists are expert gymnasts. They know how to wran-
gle and twist data into random formats, data structures, and pipelines
— all in multiple languages.*” A month or so into my job, I needed to
learn Spark to write some of the first ETL pipelines for our com-
pany.48 T grew to love Spark. It is a rabbit hole you can continuously
go deeper into. I think a fun language consists of two things: it is
easy to quickly pick up a working knowledge of, and you can con-
stantly learn new things and feel smart when you learn them.

When we got our first dose of “big data” that wouldn't fit on one
machine, we started using Spark to generate features, dump them
in a table, then subsample this feature table into relevant training

45 Joel Grus has an excellent relevant
presentation on this.

4 Maybe the way to fix Jupyter to avoid
hidden state problems is to reset state
whenever a cell is changed to what it
was immediately before that cell was
run. You could free relevant memory
when a cell is deleted. But there are

a lot of edge cases here; this solution
would not work all the time and could
be more of a hassle.

471 thought I had to become a gymnast
after obscene pointer gymnastics in my
systems courses, but this is nothing
compared to all the obscure pandas
manipulations my former data scientist
colleagues know how to do.

Thankfully, learning Spark was not
so bad, since I had taken a databases
course in college. I like learning new
programming languages and frame-
works — there is a beautiful frustration
that comes from having a thought in
your head and not being able to ex-
press it in the particular language. It
is a wonderful to watch this feeling
slowly fade over time as you learn the
language.

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1

PREDICTIVE MODELING: A RETROSPECTIVE 15

files that could fit in memory. At the time, a data scientist and I were
the only people building machine learning models. When we had to
work on the same modeling problem or prediction task, we did not
anticipate how many technical issues we would run into as a result
of dividing up the computation. We just divided the list of features
in half, individually wrote code to compute each feature, and output
our features into tables of the same schema. Our individual Spark
feature generation pipelines read from the same upstream tables of
data; however, our resulting feature tables had different numbers of
rows. How does one even go about debugging this? The pipelines
were complicated, and we write code differently.

I spent a day trying to identify the differences but didn’t come
up with anything. We had a deliverable coming up, so I just moved
forward to join the tables and train a model. The number of rows
weren't all that different; maybe we could still get some results.49 I
had not specified a primary key in constructing the tables, but im-
plicitly I knew that the primary key was a compound key, consisting
of “vehicle ID” and “repair date” columns. I joined the tables on
the relevant keys without considering the fact that not all vehicles
have a repair date, thus some “repair date” values were null! The
join messed up the expected number of rows in the resulting table, I
ended up getting double the number of positives, and my modeling
results were inflated.>°

So I rewrote the pipeline from scratch, adding assert statements
after every join to make sure the number of rows in the resulting ta-
ble didn’t change. Later on, after a coworker redesigned the pipeline
to generate a versioned>" feature table on a schedule, we also added
assertions to check for unique primary keys. I love asserting when
I am writing Spark — my goal is to restrict as many possibilities for
silent failure to the modeling stage, not ETL or feature generation.

Is data science an art or a science?

Some people say data science is more of an art than a science. Don-
ald Knuth famously says “science is knowledge which we under-
stand so well that we can teach it to a computer; and if we don’t fully
understand something, it is an art to deal with it...computer pro-
gramming is an art, because it applies accumulated knowledge to the
world, because it requires skill and ingenuity, and especially because
it produces objects of beauty.” 5* I can get meta and talk about how
art and science are closely intertwined; both require careful, methodi-
cal thought and execution as well as a certain amount of creativity to
construct something no one has made before.

In traditional software programming, you, a human, produce code

4 This is bad engineering. Very bad. 1
have never done this again.

5 On the bright side, this problem
highlighted an unexpected difference
between the feature tables. Our “repair
date” values didn’t match up.

5' This is the only MLOps rant I have
(see my Twitter for many other rants):
the process of iterating on good infras-
tructure for ML can feel endless. We
didn’t version our data, models, and
other artifacts for almost half a year. In
hindsight, it seems silly to set up an ML
experimentation pipeline without ver-
sioning. There’s no other way to ensure
reproducibility. But as soon as we had a
product and many people working on
the same ML problem, the need for ver-
sioning was apparent, and we set this
up fast. Post-versioning, initially there
was a pain point of tracing a result back
to all of the versions of the components
that produced it — you need to find the
Airflow run ID that produced it, code
outputs or logs, associated metrics,

git hash, and more. Once we started
deploying models in production, I real-
ized I needed infrastructure to “trace”
our production ML pipelines — both

the specific model binary as well as

the lineage of models over time in that
pipeline.

5 Donald E. Knuth. Computer
programming as an art. Com-

mun. ACM, 17(12):667-673, Decem-

ber 1974. ISSN ooo1-0782. poI:
10.1145/361604.361612. URL https:
//doi.org/10.1145/361604.361612

https://twitter.com/sh_reya
https://doi.org/10.1145/361604.361612
https://doi.org/10.1145/361604.361612

PREDICTIVE MODELING: A RETROSPECTIVE 16

to solve a problem. When doing predictive modeling — an important
facet of data science work — you, a human, produce code to produce

code to solve a problem. This kind of data science work needs creativ-

ity in many stages. Creativity is necessary in feature generation — the
biggest gains I've gotten in data science come from “genius” feature
ideas, particularly those suggested by domain experts.>3 Creativity
is also required in the actual act of modeling, which can sometimes
frustratingly feel akin to compiler optimization in hopes that the
resulting generated binary does something different.>4

At Viaduct, I had the privilege of thinking about the same ML
problem for over a year. As expected, I had more ideas on my mind
than time to implement them.>> Ideas ranged from things like run-
ning gradient boosting on different batches rather than the same
dataframe every round to optimizing different objectives. The peo-
ple I spend time with also inadvertently influence my ideas — for
instance, I had (and still have) a huge crush on someone who does
research in deep reinforcement learning, and for a while, I thought
about using RL to compute a policy of when to fix at-risk vehicles
given certain constraints to minimize total on-the-road failures.

I experimented with a new modeling idea once a month, on av-
erage. When my colleague or I had a new idea, we’d immediately
DM the other person and spend hours together, prototyping, coding,
experimenting, and learning.5° Most of our ideas could be imple-
mented and tested in a couple of long programming sessions, but we
didn’t shy away from larger challenges. For example, in one large
project that spanned several weeks, we trained Transformer 57 mod-
els on raw sensor data to produce embeddings to use in downstream
models. The engineering challenges around dataset size and inte-
grating this into a production pipeline were massive, but the most
excited I ever felt at Viaduct was when I saw the Transformer work-
ing — for each sensor, it predicted the next time step’s value better
than forward filling from the current time step’s value.5®

Many ML practitioners claim you do not need to feel confident in
your mathematical abilities to apply ML well. I disagree. I needed
mathematical maturity to understand the science of existing survival
analysis modeling techniques®® and pursue the art of experimenting
with related ideas. Working with my programming partner coworker
was especially great for me because he actually studied math in
college, and math is definitely not my strong suit.? In one fun mod-
eling idea experiment, we constructed a likelihood function of the
exponential probability density function, as shown in equation (2),
and wrote a custom xgboost loss function to maximize it. To write
a custom xgboost loss function, you need to compute the first and
second order gradients with respect to the function that the model

% I've learned that domain experts don’t
necessarily know machine learning

or relevant terminology. To get good
feature ideas, I don’t explicitly ask for
feature ideas. I ask them how they
would go about making a prediction on
a raw data point — what's the first thing
they would look at?

54] heard this compiler optimization
analogy from Dylan Hadfield-Menell.

% For each problem in my life, I have a
process allocated to think about it. All
of these processes are either running in
the background or foreground. They
are always running. It really sucks.
Sometimes I wish I could just send a
SIGSTP to a process corresponding to a
problem I can’t solve and a SIGCONT
when I am ready to think about it
again. Unfortunately, I am only capable
of spawning new processes and sending
SIGKILLs.

51 cannot understate the value of
having a good programming partner

to implement ideas with. It makes the
experimentation process actually fun,
not just bearable. Most people feel
more productive programming alone;

I certainly felt this way before I met
one of my coworkers. I am significantly
faster and feel more powerful when I
am working with him.

57 Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762

5 Why deep learning? In this case,

we had around a terabyte of sensor
data that we didn’t know how to fully
leverage as features.

3 There are several models in this
family, such as Cox Proportional-
Hazards or accelerated failure time
(AFT).

% I'm easily the worst mathematician
in my college friend group, and I

even took around 5 math courses that
weren't required for the CS major. I
wonder if most Stanford CS grads also
feel weak at math.

https://people.eecs.berkeley.edu/~dhm/
http://arxiv.org/abs/1706.03762

PREDICTIVE MODELING: A RETROSPECTIVE 17

is trying to learn (A(x) in this case). This is not a machine learning

paper for me to flex that I can compute gradients and Hessians, so

I will spare you from the computation; after we coded up the loss

function and ran the experiment, we unfortunately had to add it to % [have many failed ideas. I tell myself

our mental list of ideas that didn’t work at the time.5? I do not write them down on paper
because I want to experiment faster, but
it is probably because I am lazy. This

L (t> =A (x) exp (—A (X) t) (2) is probably not a good strategy in the
. . . L long term.
I learned that in data science, the goal is not to minimize the num-

ber of failed ideas; it is to accept them as part of the process. I find it
more useful to think about data science not as an art or a science, but
as an emotional relationship with the training algorithm. I come to
the relationship with a problem, and I ask the training algorithm to
produce a model. It usually runs but doesn’t give the results I want
on the first try. I have to be patient and sympathetic to both what

the training algorithm can do and how quickly or slowly I learn its
quirks. When something doesn’t work the way I expected, do I blame
myself or the training algorithm? Over time, I realized that the blame
doesn’t matter. We are both partners in making a machine learning
pipeline deliver results. This relationship is still a work in progress
for me, but I am slowly learning to accept limitations, let go of un-
realistic expectations, and allow myself to be pleasantly surprised
when something works. Ultimately, the goal is to reach a level of
intimacy with the algorithms such that words alone cannot roman-
ticize it enough; the results continually speak for themselves, and
everyone understands that the results could have only come from the
programmer’s unique symbiotic relationship with their machine.

Product-driven data science

When I helped release a product built around my predictive models,
we experienced a jarring 20% performance drop between the met-
ric on the offline evaluation set and the metric on live predictions.
There’s no way for me to know “exactly what all the issues are,”

but one issue I observed was label lag — we learned about vehicle
component failures sometimes months after they occurred, so our
metrics on our live predictions weren’t always up to date. A plethora
of other problems exist when delivering a product around predictive
modeling, but I will not talk about those here.

At the end of the day, businesses just want to make money. To pro-
vide business value, I had to work with nontechnical stakeholders
that understood exactly how the money flowed in and out. I didn’t
know what problems cost our clients the most money. My nontechni-
cal coworkers understood these problems deeply, much better than I
did. From working closely with them, I learned several things:

PREDICTIVE MODELING: A RETROSPECTIVE 18

1. Promising data science results is hard — we often don’t know the
upper bound of ML performance. Maybe the data is just impos-
sible to separate in R". We don’t know things about high dimen-
sional spaces; we just pretend we do.

2. Solving the hardest ML problem looks impressive, but solving a
problem that saves the most money is actually the most impres-
sive. These two problems are not always the same — for example,
when you have an imbalanced dataset, achieving high recall could
be easier than high precision.

3. Baselines aren’t necessarily machine learning models; they are
whatever solution currently exists. They could be rule-based. They
could be nonexistent.

4. Writing a production machine learning pipeline is mainly soft-
ware engineering. Separate inference pipelines from evaluation
pipelines, since you may run them and publish results at different
times. Make sure your computation graph is a DAG, not a cycle,
especially when you inevitably add new tasks. Take time to plan
out the data models. The schema for the tables directly powering
the product inevitably change as you are iterating on the product,
so design data models such that you have to change schema for as
few tables as possible.

5. Debugging models in production can lead to frustration and ex-
asperation when focusing on a few individual mispredicted data
points. It’s hard to draw any general conclusions from such de-
bugging investigations.

6. When you build predictive models that humans make decisions
on, you might need to account for the fact that humans making
decisions based on the model may not be optimal. For example,
in one project, a client initially wanted a ranked list of vehicles,
ordered by descending probability of component failure. After
I trained the first version of the model, I learned that the client
cared about certain subpopulations more than others.

7. Everyone’s terminologies are different.%? Stick to simple descrip-
tions; avoid overloaded words and buzzwords.

With the hundreds of modeling projects I've done over the years,
I think I've learned a lot. I learned how to be fast. I learned how to
respond to unreasonable ML requests in record time, even if it meant
hackily build a new model in 2 hours to beat some result.®3 T know
this is a function of short, fast projects, which probably are more
prevalent in classes and startups.

¢ For instance, when I say “algorithm,”
I mean a series of steps that I control.
Maybe this is what other people also
mean, and there is confusion because
different stakeholders control different
things — for example, the “algorithm”
for me is how I train a model; the
“algorithm” for a client is the entire
end-to-end ML product that shows up
on their computer in true Software-as-a-
Service form.

1 became so good at hyperparameter
tuning — a secret I learned is to focus on
hyperparameters that determine how I
subsample to construct the training set.
One such example of a hyperparameter
is how I downsample the majority class.

PREDICTIVE MODELING: A RETROSPECTIVE 19

But this kind of work made me realize that although I absolutely
love distilling a problem into an easy question and coming up with
an answer as quickly as possible, I also want to spend long amounts
of time dwelling on this information to think of something long term,
the “right” solution.®# Although startups might be a great place to
do the former, you cannot do the latter at a small startup. When I
realized this, I knew it was time for me to move on. Leaving a place
that taught me so much was truly difficult.

Parting thoughts

Learnings from one data science project can be highly applicable

to the next. I would like to think that I have come a long way since
my Block Dude days. I'm very proud of the last deep learning class
project I did at Stanford — something personal, something impactful.
I trained an autoencoder on my text message data to identify manic
and depressive episodes,®5 and I didn’t expect to be able to recall any
episodes. But I was able to recall over 40% of episodes! It seems like
a low number, but to me, it was magical, since the true baseline —
myself — had a recall rate of 0%. I didn’t care what grade I got;%° all
that mattered to me was that I had finally built something useful for
myself with machine learning.

I was not on time to the poster session. I hurried to some Arrillaga
building with my poster freshly produced from FedEx’s massive
printer, set up some battered easel, and explained my work to the
handful of people that stopped by. I was honest about my results,
and that sparked conversation. Maybe because I was texting faster,
manic messages had more typos and thus a higher MSE, someone
said. I liked that comment. I made a mental note to add the length of
the message as a feature for the linear model I was planning to train
on top of the autoencoder’s hidden states and other simple features.
My data wasn’t perfect, and I could use the imperfections to my
advantage instead of try to clean the data further.

The poster session ended, and I biked to work for a client meeting.
The diagnostic trouble codes that occur in a vehicle couldn’t be used
to accurately predict failure, someone said, because many vehicles
had tens or even hundreds of codes fire consecutively — sometimes
for no good reason. Maybe this was because of a networking prob-
lem. Or a faulty sensor.

“What do we do about it? Should we drop duplicate consecutive
codes?” they suggested.

I thought for a moment, then responded. “It could be a feature.”

% To build something that repeatedly
delivers value, you can’t escape the
responsibility of good, methodical
science.

I am diagnosed with Bipolar II, and I
had several weeks of episodes. I treated
this as an anomaly detection problem.

1 think I actually got a near-perfect
score on the project, even though the
“high” MSE and “low” precision and
recall rates were nicely displayed in the
poster.

http://cs230.stanford.edu/projects_fall_2019/posters/26247048.pdf
http://cs230.stanford.edu/projects_fall_2019/posters/26247048.pdf

PREDICTIVE MODELING: A RETROSPECTIVE 20

Acknowledgements

This has turned out to be much longer than I expected, and I feel like
I have only scratched the surface of all that I have learned from this
field. I feel immensely privileged to have learned from and worked
with smart and well-known people and institutions. But for the first
time in my life, I feel incredibly burned out,®7 and I do not have a
plan for what to do tomorrow. A large part of my identity has re-
volved around programming and modeling, and I'm happy that
some of my strong emotions and thoughts (at least about predictive
modeling) have made their way out of my brain and into this docu-
ment.

I want to give a special shout out to Alex Tamkin and Brad Ross.
Thank you for your encouragement and feedback on this essay, and
more importantly, thank you for being in my life.

References

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD’96, page
226—231. AAAI Press, 1996.

Donald E. Knuth. Computer programming as an art. Commun.
ACM, 17(12):667-673, December 1974. ISSN 0001-0782. DOTI:
10.1145/361604.361612. URL https://doi.org/10.1145/361604.
361612.

Colin Lea, René Vidal, Austin Reiter, and Gregory D. Hager.
Temporal convolutional networks: A unified approach to ac-
tion segmentation. CoRR, abs/1608.08242, 2016. URL http:
//arxiv.org/abs/1608.08242.

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jor-
dan M. Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha
Bansal, and Su-In Lee. From local explanations to global under-
standing with explainable ai for trees. Nature Machine Intelligence, 2
(1):56-67, Jan 2020. ISSN 2522-5839. DOI: 10.1038/542256-019-0138-
9. URL https://doi.org/10.1038/s42256-019-0138-9.

Chris Olah. Understanding Istms, Aug 2015. URL https://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.

7 A small part of me wonders why I
feel burned out so early in my career. I
really did enjoy studying and working
in machine learning. I fell in love with
the idea of programming machines

to learn from the world around them,
and I met some of my best friends in
this journey. I am lucky to be in a field
where I can take time off — machines
will still be there when I'm ready to
return back to programming.

https://twitter.com/AlexTamkin
https://brad-ross.github.io/
https://doi.org/10.1145/361604.361612
https://doi.org/10.1145/361604.361612
http://arxiv.org/abs/1608.08242
http://arxiv.org/abs/1608.08242
https://doi.org/10.1038/s42256-019-0138-9
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

PREDICTIVE MODELING: A RETROSPECTIVE

Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Wikipedia contributors. Mean squared error — Wikipedia, the free
encyclopedia, 2020. URL https://en.wikipedia.org/w/index.php?
title=Mean_squared_error&oldid=995577263. [Online; accessed
5-January-2021].

Wikipedia contributors. Extract, transform, load — Wikipedia, the
free encyclopedia, 2021. URL https://en.wikipedia.org/w/index.
php?title=Extract,_transform,_load&oldid=998138895. [Online;
accessed 5-January-2021].

21

http://arxiv.org/abs/1706.03762
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=995577263
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=995577263
https://en.wikipedia.org/w/index.php?title=Extract,_transform,_load&oldid=998138895
https://en.wikipedia.org/w/index.php?title=Extract,_transform,_load&oldid=998138895

	Introduction
	Childhood
	Facebook
	Google Brain
	Stanford
	Viaduct
	Parting thoughts
	Acknowledgements

