
Steering Semantic Data Processing With DocWrangler

Shreya Shankar1†, Bhavya Chopra1†, Mawil Hasan1, Stephen Lee1,
Björn Hartmann1, Joseph M. Hellerstein1, Aditya G. Parameswaran1, Eugene Wu2

1UC Berkeley EECS, 2Columbia University
{shreyashankar,bhavyachopra,mawil0721,stephen_lee129,hellerstein,adityagp} @berkeley.edu,

bjoern@eecs.berkeley.edu, ewu@cs.columbia.edu

USER

LLM PIPELINE

DATA

Gulf of
Comprehension

Gulf of
Generalization

Gulf Of
Specification

 Limited bandwidth
for users to do
sensemakin

 Errors and outliers
not obvious at scale

 User intent is hard to
communicat

 Prompts need to be
detailed and data-
specific

 LLM behavior varies
across document

 Requires fine-grained
decomposition

A

B

C

Docs & Outputs
condition discomfort_level symptoms

In-Situ User Notes

Add Note

Prompt Refinement

Edit Add Feedback Accept Changes

 Suggested Modifications for Prompt

Operation Decomposition

Decompose

Operation Too Complex!

Consider decomposing extract_discomfort because...

A

B

C

Figure 1: Effective semantic data processing requires interaction between users, their pipeline of LLM calls, and their data (both

raw documents and LLM outputs). DocWrangler contributes three novel features to address: (A) the gulf of comprehension

through in-situ user notes, (B) the gulf of specification through LLM-assisted prompt refinement, and (C) the gulf of generalization

through LLM-assisted operation decomposition.

Abstract

Unstructured text has long been difficult to automatically analyze
at scale. Large language models (LLMs) now offer a way forward
by enabling semantic data processing, where familiar data process-
ing operators (e.g., map, reduce, filter) are powered by LLMs in-
stead of code. However, building effective semantic data processing
pipelines presents a departure from traditional data pipelines: users
need to understand their data to write effective pipelines, yet they
need to construct pipelines to extract the data necessary for that
understanding—all while navigating LLM idiosyncrasies and incon-
sistencies. We presentDocWrangler, a mixed-initiative integrated
development environment (IDE) for semantic data processing with
three novel features to address the gaps between the user, their
data, and their pipeline: (i) In-Situ User Notes that allows users to
inspect, annotate, and track observations across documents and
LLM outputs, (ii) LLM-Assisted Prompt Refinement that transforms
user notes into improved operations, and (iii) LLM-Assisted Opera-
tion Decomposition that identifies when operations or documents
are too complex for the LLM to correctly process and suggests de-
compositions. Our evaluation combines a think-aloud study with
10 participants and a public-facing deployment (available at do-
cetl.org/playground) with 1,500+ recorded sessions, revealing how
users develop systematic strategies for their semantic data process-
ing tasks; e.g., transforming open-ended operations into classifiers

†Co-first authors. Corresponding author: Shreya Shankar.

for easier validation and intentionally using vague prompts to learn
more about their data or LLM capabilities.

CCS Concepts

• Information systems→Datamanagement systems; •Human-

centered computing → Interactive systems and tools; • Com-

puting methodologies→ Artificial intelligence.

Keywords

Data Processing, Large Language Models, Human-AI Interaction

1 Introduction

Unstructured documents—such as PDFs, reports, transcripts, and
emails—are notoriously difficult to analyze automatically [18]. Tra-
ditional data analysis systems like relational databases [29] and
map-reduce [17] typically operate on structured data (i.e., tables)
and fail to effectively handle unstructured content. But large lan-
guage models (LLMs) now present a way forward through semantic
data processing [4, 47, 64, 71, 91]: a paradigm where users can in-
struct LLMs to manipulate data through familiar data processing op-
erators like map, reduce, filter, and groupby. For example, consider
analyzing medication side effects in unstructured doctor-patient
conversation transcripts. For this task, a semantic map could extract
mentions of medications and reported side effects, followed by a
semantic reduce to summarize effects per medication. The impact of
semantic data processing could be transformative: just as traditional

shreyashankar, bhavyachopra, mawil0721, stephen_lee129, hellerstein, adityagp
@ berkeley.edu
bjoern @ eecs.berkeley.edu
ewu @ cs.columbia.edu
https://docetl.org/playground
https://docetl.org/playground

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

data analysis systems enabled structured data processing at scale
and are now ubiquitous across sectors, semantic data processing
has the potential to revolutionize how we work with data, but for
the even-bigger realm of unstructured documents [21, 53].

However, current semantic data processing systems remain far
from realizing their potential. As Fig. 1 illustrates, effective semantic
data processing involves three components—the user, their pipeline
of LLM operations, and the data (both raw documents and LLM
outputs)—with significant challenges emerging from their interac-
tions. Drawing on Norman’s gulfs of execution and evaluation [62],
we identify “gulfs” that pertain to each pairwise interaction. First,
consider the gulf of comprehension between users and their unstruc-
tured data. Documents contain too much information for humans
to fully process [35, 42], and LLMs, when asked to process many
documents, inevitably and unpredictably introduce mistakes or
misinterpretations that users find difficult to keep track of. Sec-
ond, there is a gulf of specification between users and their seman-
tic data processing pipelines: users must first discover their true
intent—often only possible after exploring sufficient data to under-
stand what questions the data can reasonably answer—and then
express this intent as pipelines of operations with corresponding
LLM prompts [83, 86]. In both cases, users struggle with distilling
their many observations about data patterns and LLM behaviors
into effective specifications. Third, the gulf of generalization be-
tween the semantic data processing pipeline and data persists even
when a pipeline perfectly captures user intent. Even with clear,
unambiguous prompts, LLMs may fail to generalize correctly to the
user’s actual data, struggling with long documents [49] or complex
operations requiring simultaneous reasoning about multiple ele-
ments [33]. Complex tasks need to be decomposed into multiple
LLM calls instead of one [20, 71, 79].

To address the aforementioned gulfs, we present DocWran-
gler, a mixed-initiative integrated development environment (IDE)
designed for semantic data processing (Fig. 2). DocWrangler
builds on established interaction patterns for transforming data: a
notebook-like pipeline constructor with operation cells that can be
reordered and toggled [41], and a spreadsheet-like output viewer
with automatically-generated visualizations based on data types [35].
We additionally contribute three novel features that each address a
gulf in Fig. 1. Our in-situ user notes feature tackles the compre-
hension gulf by enabling users to annotate observations directly
on both documents and outputs, creating a persistent, searchable
record that helps track patterns across complex datasets with min-
imal context switching. Our LLM-assisted prompt refinement

feature addresses the specification gulf through an interactive in-
terface where an LLM analyzes the pipeline, documents, outputs,
and user notes to suggest more effective prompts—that the user can
then tweak if they would like. Finally, our LLM-assisted operation

decomposition feature targets the generalization gulf by identify-
ing when the pipeline is inadequate for the documents, using an
LLM-as-judge that runs in the background [72, 105]. Users receive
notifications highlighting detected issues along with actionable
suggestions for breaking operations into more manageable steps.

To understand how DocWrangler supports semantic data pro-
cessing in practice, we evaluated its use as a design probe, fo-
cusing on user needs, strategies, and workflows. Our evaluation
used two complementary approaches: (i) a think-aloud study with

10 participants across different domains that provided rich qual-
itative insights into users’ mental models and decision-making
processes, and (ii) a public online deployment (available at do-
cetl.org/playground) that attracted over 1,500 uses, allowing us to
quantitatively analyze pipeline structures and how they changed.
We observed that users develop systematic strategies for their anal-
ysis tasks, for example, by transforming open-ended operations
into classifiers for easier validation. Users also employed intention-
ally vague prompts in map operations to learn more about their
data, reminiscent of epistemic actions, i.e., actions taken not to
directly achieve a goal but to gather information that reveals new
possibilities [40, 89].

In summary, we contribute the following:
• The design and implementation of DocWrangler, an IDE for

semantic data processing;
• Findings from a 10-person think-aloud study that demonstrate

how users opportunistically align with LLMs, with rich insights
into both progress and challenges; and

• Insights from a real-world deployment showing how semantic
data processing is used across domains and areas where users
need additional support.
We first review related work in Section 2. We next give a more de-

tailed background on operators in semantic data processing systems
and motivate DocWrangler’s design in Section 3. Subsequently,
we describe our interface and implementation in Section 4. Then,
we present our study methodology in Section 5. We detail our find-
ings from our user study in Section 6 and deployment in Section 7,
and discuss implications for future system design and human-AI
collaboration in Section 8.

2 Related Work

In this section, we review relevant work that informs DocWran-
gler’s development: semantic data processing systems that enable
LLM-powered operations on text, then, interfaces for structured
data analysis, and finally, solving general tasks with LLM pipelines.

Semantic Data Processing Systems. The goal of semantic data
processing is to leverage LLMs to process large volumes of unstruc-
tured text through natural language instructions. For instance, a
pipeline might use an LLM-powered map operation to classify sen-
timent in customer reviews, followed by an LLM-powered reduce

operation that summarizes common themes for each class (i.e., pos-
itive and negative). While several systems now support semantic
data processing specified through code [4, 47, 64, 71], users strug-
gle to build effective pipelines with these systems [4, 48]. Some
systems try to automatically optimize pipelines for cost [47] or ac-
curacy [71]. However, the end-user challenges of determining what
data processing intent to express and how best to express it remain
unsolved, given that user preferences may depend on LLM outputs
themselves [72]. Moreover, automatic accuracy optimization tech-
niques often require extensive time and computational resources to
explore different decompositions and prompts [38, 71, 78], making
them impractical for interactive settings. Generally, semantic data
processing systems focus on optimizing an “inner” computational
loop that assumes well-specified tasks and clear evaluation met-
rics. However, real-world semantic data processing rarely begins
with perfectly formed specifications, and current systems provide

https://docetl.org/playground
https://docetl.org/playground

Steering Semantic Data Processing With DocWrangler

A

B

Figure 2: Screenshot of the DocWrangler IDE showing our notebook-style pipeline constructor (A) and spreadsheet-like

data inspector (B). User notes on documents and LLM-generated data, provided in-situ, and the raw document collection are

displayed in the left and right sidebars, respectively.

minimal support for the crucial human-centered “outer” loop of
discovery and refinement. DocWrangler provides such an envi-
ronment for users to author and test their semantic data processing
pipelines through iterative exploration.
Interfaces for Structured Data Analysis. The history of data
analysis tools provides valuable insights for building semantic data
processing interfaces. We briefly cover interaction paradigms for
data analysis, all of which operate instead on structured data, as
semantic data processing of unstructured text is a new field.

First, coding libraries, from early ones like SAS [45] to mod-
ern popular ones like Pandas [54], provide data transformation
capabilities through API calls. While such libraries provide high
flexibility, they require users to constantly switch between program-
ming environments and data inspection tools. Graphical dataflow
interfaces [32] improved upon this workflow by visualizing pro-
cessing steps through “boxes-and-arrows” metaphors, though they
still obscure the actual data being transformed. Spreadsheets [80]
and visual analytics tools [81] instead opt for direct manipulation
for editing and visualizing data respectively, making data analysis
more accessible to non-programmers. Over the decades, research
has consistently shown that “always-on” visualizations can com-
plement data processing tools, helping users discover insights and
validate transformations faster [34, 44, 75], especially when users
can directly interact with visualizations [76].

Hybrid approaches aim to combine the best aspects of the previ-
ous paradigms. Systems like Potter’s Wheel [65] combine interac-
tive interfaces with underlying domain-specific languages for data
transformation. Programming-by-example approaches [25, 99] infer
transformations from user demonstrations in limited settings (e.g.,
regex-based transformations), though for enterprise data processing

they require many examples to get started, and are difficult to vali-
date and generalize. Predictive interaction [28] introduced a mixed-
initiative approach to data transformation through a “guide/decide”
loop, where systems present suggested transformations based on
user selections, while also letting users inspect data to see which
transforms are necessary [35].

More recently, LLMs have transformed how users interact with
data, though we are still in the early stages of this evolution. The
first generation of LLM-based tools primarily created natural lan-
guage interfaces for structured data tasks: specifically, conversa-
tional assistants that generate SQL or Pandas code [13, 24, 26, 69,
104]. Steering these AI-generated pipelines is difficult [55]: LLMs
often misinterpret user intent or produce incorrect code, requiring
specialized interfaces for correction. Xie et al. [98] propose visual-
izing pipelines as directed acyclic graphs, reminiscent of dataflow
GUIs, while Kazemitabaar et al. [37] propose a notebook-style in-
terface that breaks complex workflows into discrete, inspectable
steps. These environments are code-centric: they prioritize code
review over data inspection, overlooking the well-established value
of integrated data visualization [44, 76, 97]. Since data is messy and
transformations rarely work on the first try, users need to switch
between writing code and reviewing outputs to catch anomalies
and spot data that still needs processing.

Moreover, perhaps because they focus on structured data, prior
work treats LLMs merely as code generators rather than semantic
operators in their own right. In semantic data processing, LLMs
aren’t just writing scripts in a traditional data processing language,
they provide entirely new black-box capabilities for unstructured
data transformations. This creates a new challenge: while tradi-
tional data processing code can often be validated through static

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

analysis or test cases, LLM behavior in semantic operations is in-
herently uncertain and context-dependent. Effective interfaces for
semantic data processing must therefore enable refinement of both
the pipeline structure and individual operations while keeping data
continuously visible throughout the process.
LLM Workflow Development and Validation. As LLMs tackle
increasingly complex problems, like semantic data processing, users
need multi-step workflows to express their goals. Effective inter-
faces for general problem-solving with LLMs should support the
entire process—from task decomposition to output refinement—
building on established research in mixed-initiative interfaces [31],
collaborative AI [2], and interactive machine learning [19].

Task decomposition has deep roots in both human and AI sys-
tems. Crowdsourcing research introduced strategies for breaking
down complex tasks, some of which has been successfully applied
to LLMs [23, 63], and cognitive science has studied human ap-
proaches to problem decomposition [59]. Recent interfaces apply
these insights to convert natural language into executable sub-
tasks [37, 103], but users still struggle with information overload
when examining LLM-generated workflows [12, 37, 100]. This
points to a critical need for interfaces that help users make sense of
these complex workflows. Some tools address pipeline sensemak-
ing by enabling interactive prompt experimentation and output
inspection [5, 96], although these are not designed for data pro-
cessing. Unlike general LLM pipelines, semantic data processing
faces steeper challenges in bridging the gulfs shown in Fig. 1. The
heterogeneous nature and scale of unstructured documents make
both comprehension and LLM generalization more difficult. Sep-
arately, while semantic data processing is underexplored, we are
starting to see “point” solutions address specific semantic data pro-
cessing applications; e.g., LLooM’s interface for concept induction
tasks [42]. However, we lack general-purpose interfaces for semantic
data processing across diverse document and operator types. De-
signing such interfaces is not straightforward, as users encounter
the “gulf of envisioning” [83]—the cognitive gap between having a
goal and translating it into effective LLM instructions—while also
understanding how to evaluate whether the output meets their
original intentions.1

Even when a complex task is expressed as a pipeline of well-
scoped operations, validating and debugging LLM outputs remains
challenging [5, 16, 50]. Users face high cognitive load from con-
stantly switching between prompting and evaluation [82, 87], and
developers struggle with LLMs’ unpredictability—fixing one issue
often creates others [101]. Some tools address these challenges
through automated evaluation, often employing an LLM-as-judge
methodology where an LLM evaluates outputs against specific crite-
ria [39, 51, 70, 72, 85, 105]. These automated evaluation approaches,
which focus on validating individual outputs, have not been consid-
ered in the context of semantic data processing, where users need to
assess both individual results and aggregate patterns across entire
datasets. Moreover, in semantic data processing, different types
of operations require distinct evaluation approaches—for example,
assessing the accuracy of information extraction is different from as-
sessing the quality of a summary. Specialized visualizations [22, 84]

1Note that for semantic data processing, Subramonyam et al. [83]’s “gulf of envisioning”
encompasses all the gulfs presented in our model in Fig. 1.

can help users validate and understand LLM behavior, though again,
these have not been applied to semantic data processing. Addition-
ally, identifying errors in LLM outputs is only half the battle. Users
also need tools to refine pipelines based on observed patterns. We
build on prior work that proposes automatic prompt refinement
for image generation [1, 10]: for semantic data processing, prompts
may need to change in ways beyond specific attributes (e.g., subject
or style) as users discover their true question, potentially shifting
the entire task direction.

Summary. Overall, prior work points to a clear challenge: seman-
tic data processing systems lack effective interfaces for users to
iteratively develop, validate, and refine their pipelines. Prior work
also sheds light into what we should care about when building an
interface for semantic data processing workflows: treating them as
data transformation workflows first and foremost, while simultane-
ously providing tools for effective prompt engineering, enabling
users to validate both individual outputs and aggregate patterns
across documents, and helping users navigate the gulfs proposed
in Fig. 1. DocWrangler embodies the aforementioned principles
as an IDE, while preserving users’ agency throughout [3, 31].

3 DocWrangler Design

Wenowdescribe the foundation and design principles of DocWran-
gler. While our interface builds on DocETL [71], an open-source
semantic data processing system, as the backend, we could have
equally well chosen to build DocWrangler on top of other se-
mantic data processing systems [4, 47, 64, 91]. We first provide
background on DocETL, then present our design goals based on an
analysis of user needs and challenges in semantic data processing.

3.1 DocETL Background and Example

DocETL is a declarative framework for building semantic data
processing pipelines, where many of the unit data processing op-
erations are executed by LLMs. Each LLM-powered operator is
defined through two components: a natural language prompt that
specifies what the operation should do, and an output schema that
determines the structure of data the LLM should generate. Inputs
to DocETL are documents, represented as JSON collections of key-
value pairs, allowing flexible handling of both structured and un-
structured content. An entirely unstructured document (like an
email or news article) can be represented as a single key-value pair
(e.g., {"content" : "full text here..."}).DocETL offers multiple seman-
tic operators, including: map (applies prompts to individual docu-
ments), filter (removes documents that don’t meet specified crite-
ria), reduce (processes document groups collectively), and resolve

(performs entity resolution and canonicalization across documents).
These operations leverage Jinja templates in their prompts [61],
enabling users to reference specific document key-value pairs. As
the pipeline executes, each operation enriches documents with new
key-value pairs according to its output schema, allowing subsequent
operations to build upon earlier results.

To illustrate how these components work together in practice,
consider a semantic processing pipeline analyzing student course
reviews to identify common themes of complaints, with supporting
evidence. The pipeline might consist of three operations:

Steering Semantic Data Processing With DocWrangler

(1) A map operation that processes each review (represented as
a separate JSON document) individually, with a prompt ask-
ing the LLM to “Extract complaint themes and their supporting
quotes from this review” and an output schema defining two new
attributes, themes (an array of strings) and supporting_quotes

(an array of strings corresponding to each theme).
(2) A resolve operation that semantically de-duplicates themes

across all reviews (e.g., recognizing that “professor talks too fast”
and “professor speaks quickly” represent the same underlying
complaint), with a comparison prompt to “Consider if these two
themes are similar and return True if so”; and a resolution prompt
to “Output a single theme that best represents these themes.”

(3) A reduce operation that groups reviews by theme and generates
a summary report for each theme, with a prompt like “Sum-
marize the common sentiments and representative quotes for this
theme,” and an output schema for the new summary attribute.

Although a system likeDocETL can relieve users of the low-level
execution details (e.g., orchestrating all LLM calls associated with
such a pipeline), constructing effective pipelines remains challeng-
ing because users often cannot fully specify their analytical intents
in advance. For example, what the LLM “believes” is a complaint
may not be the type or granularity of complaint the user is inter-
ested in, or the themes extracted might combine issues the user
would prefer to see separately.

3.2 DocWrangler Design Goals

To better understand the challenges users face when building LLM-
powered data processing pipelines, we analyzed messages and feed-
back from theDocETLGithub and Discord community2 (400+mem-
bers) and drew insights from prior work (described in Section 2).

We observed that users’ workflows in semantic data processing
typically follow three phases that we call the “Three I’s.” Users
cycle between initializing their pipelines by defining operations,
then inspecting outputs to understand results, and improving

their pipelines based on these insights. We organize user pain points
across these phases. First, there are initialization challenges. Writ-
ing effective operations requires predicting how well an LLM will
interpret a user’s data processing intent. This challenge creates
a premature commitment problem [9]—users invest time crafting
operations without knowing if they’ll work, often wasting effort
when outputs fail to meet expectations. Users expressed a desire for
assistance in writing the pipeline, as well as “preview” functionality
to validate their approach before committing to full execution.

Next, there are inspection challenges. After initializing, users
struggle to validate whether LLM behavior across documents aligns
with their expectations for each operation. The volume of data
makes review of all documents and LLM outputs impractical. Users
often don’t know when they’re “losing the forest for the trees” or
vice versa when reviewing outputs. Users expressed wanting to
review intermediate operation outputs, and some mentioned that
they exported outputs as spreadsheets to look at results as different
views (row by row, all at once in a spreadsheet, or side by side)
in an ad-hoc manner. Fragmenting the validation workflow across
multiple tools creates additional cognitive load for users [15, 36].

2https://discord.gg/fHp7B2X3xx

Third, there are improvement challenges. Users struggle to
externalize patterns—both positive and negative—observed across
multiple documents. Some users took notes in spreadsheets or a
separate text file as a way to organize their insights, but they strug-
gled to translate their notes into concrete pipeline modifications.
Prior work also observes that users struggle to prompt LLMs to
edit pipelines [37]. Moreover, users did not know how to improve
pipelines when the task was “too hard” for the LLM, requiring
operation decomposition, or a redistribution of tasks between LLM-
powered and code-powered operators.

We also turned to prior work in structured data processing in-
terfaces to understand what users might need in an semantic data
processing interface. Visualization research demonstrates that users
need both overview and detail views to efficiently make sense of
complex datasets [73]—i.e., showing aggregates first helps users
identify patterns, while enabling drill-down into specific examples
supports verification [43, 81]. Data wrangling tools demonstrate
improved user productivity when users can see and edit data trans-
formation code directly [35]. Mixed-initiative interfaces highlight
the importance of preserving user agency, ensuring system ob-
servability, and reducing context-switching costs when supporting
complex, iterative tasks [3, 31, 74].

Overall, we formulated five design goals for an effective semantic
data processing interface:
• D1. Scaffold Pipeline Initialization: Help users create and

configure operations with minimal friction, with built-in guid-
ance and quick experimentation.

• D2. Facilitate Efficient Data Inspection and Notetaking:
Enable users to validate inputs and outputs individually and in
aggregate, while supporting note-taking to capture insights and
patterns.

• D3. Guide Pipeline Improvement: Offer assistance for trans-
lating user feedback into effective pipeline modifications, both at
the individual operation level (e.g., prompt improvements) and
pipeline level (e.g., operation decomposition).

• D4.Maintain End-to-EndObservability: Ensure transparency
into transformation logic at each pipeline step (e.g., inputs, out-
puts, LLM prompts).

• D5. Minimize Context Switching: Integrate all essential an-
alytical capabilities within a unified interface, minimizing the
need for external tools (e.g., spreadsheets, custom scripts, AI
assistants like ChatGPT).

4 DocWrangler System

We present DocWrangler, an integrated development environ-
ment (IDE) for semantic data processing. First, we provide an
overview of the solution and how it addresses our design goals.
Then, we present an example usage scenario that walks through
our features. Finally, we describe technical implementation details.

4.1 Overview of Solution

DocWrangler’s interface (Fig. 2) integrates a file and notes viewer,
pipeline editor, and dataset viewer in a unified workspace. To
scaffold pipeline initialization (D1), we developed a notebook-
inspired [41] editor with interactive operation cards featuring syn-
tax validation, drag-and-drop reordering, and the ability to toggle

https://discord.gg/fHp7B2X3xx

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

A

B

D

F

C

E

G

K

J

Figure 3: Workflow for analyzing patient discomfort from medical transcripts (D1; D2). (A) The user adds a new operation via

dropdownmenu. (B) A map operation card appears with syntax validation. (C) The user writes a prompt for extracting discomfort

information. (D) The user defines an output schema with three attributes to be extracted: discomfort level, description, and

symptoms. (E) Before running the full dataset, they sample 10 documents. (F) Results appear in an interactive table. (G) Eye

icons reveal exact LLM prompts for each document. (H) Column headers visualize attribute distributions. (I) Sort buttons reorder

documents. (J) Adjustable column widths help focus on specific content. (K) Search functionality helps validate extractions.

Phase Feature Goals

Initialize
Pipeline editor with operation cards that can be toggled
and reordered

D1, D4

Custom cards for each operator type with live syntax
validation

D1

Visual document flow between operations to show trans-
formation paths

D1, D4

Execution on sampled documents for quick iteration D1

Inspect

Spreadsheet-style viewer with automatic visualizations
per column

D2

Support for column resizing, filtering, sorting, and
search

D2, D5

Per-document prompt viewer to inspect exact LLM in-
puts

D4

Detailed document viewer with keyboard navigation
and side-by-side comparison

D2, D5

Output inspection available at any pipeline stage, includ-
ing intermediates

D2, D4

Improve

In-situ note-taking system for annotating and categoriz-
ing output issues

D3, D5

Persistent notes sidebar with filtering and search across
iterations

D3, D4

AI-assisted Prompt Refinement interface driven by user
notes

D3, D5

Automatic operation decomposition with explanations
and plan diffs

D3, D4

Embedded AI assistant for help with prompts, templates,
and workflow guidance

D1, D3, D5

Table 1: Key features in DocWrangler, grouped by phase

of semantic data processing, and linked to design goals.

operations on and off (Fig. 2A). Once initialized, we allow users to
run pipelines on samples to reduce response time, and we cache all

intermediate results for future reuse. After execution, to inspect
outputs efficiently (D2), our spreadsheet-like viewer, as shown in
Fig. 2B provides automated visualizations of document attributes as
columns, along with sorting, filtering, resizing, and search capabili-
ties. Our design is reminiscent of data wrangling interfaces that also
show high-level summaries [35]; however, most LLM-generated
attributes are unstructured text, so we show histograms of word
or character counts as appropriate. While not depicted in Fig. 2,
DocWrangler also has a detailed document inspector that allows
users to examine LLM outputs and source documents row by row,
with side-by-side comparison, as will be described in Section 4.2.

Then, to guide pipeline improvement (D3), we introduce
three novel features: (i) In-SituUserNotes enables users to capture
observations directly during inspection of documents and LLM
outputs, with notes persisting across pipeline runs; (ii) Prompt

Refinement suggests improved versions of prompts, based on in-
situ notes, through a conversational interface that supports both
direct editing and AI-assisted revisions; and (iii) Operation De-

composition proactively identifies when operations exceed LLM
capabilities and offers automatic restructuring with explanations.
Additionally, to maintain end-to-end observability (D4), we
visualize document flow between operations, provide access to exact
LLM prompts, and make intermediate outputs and suggested Oper-
ation Decomposition feedback inspectable. Finally, to minimize

context switching (D5), we integrated all analytical capabilities
within a single interface and, following recent systems [37, 103],
included a context-aware AI assistant to help users navigate the

Steering Semantic Data Processing With DocWrangler

A

B

C

D

E

Figure 4: In-situ user notes feature in DocWrangler (D2).

(A) User selects attribute to inspect. (B) Document viewer

dialog shows attribute statistics and enables in-situ notes. (C)

User could inspect documents side-by-side with split-screen

view, if they want. (D) User adds a note. (E) Notes persist in

the main interface sidebar.

system. Table 1 summarizes the key features of DocWrangler
across each of the “three I’s” and how they map to our design goals.

4.2 Feature Walk-Through

We present our features by illustrating an example DocWrangler
scenario, where, given a corpus of doctor-patient conversation tran-
scripts, a medical data analyst wants to analyze how emotionally
comfortable and open patients are during their visits, and how this
varies by symptom reported.

4.2.1 Initialization Phase (D1). The analyst begins by uploading
the collection of doctor-patient transcripts through the upload in-
terface (top left of Fig. 2). They can inspect their raw data in the
dataset viewer on the right, which provides an overview through
statistics about the transcript collection, including document count
(here, 87), word count distributions, and existing metadata fields
(D4, D5). With this initial understanding of their data, the analyst
creates their first operation by clicking the “Add Operation” button
(Fig. 3A), selecting a map type operation, which will create new at-
tribute(s) for each document. While defining the operation (Fig. 3B,
Fig. 3C), they write a prompt instructing the LLM to “Extract discom-
fort information from the medical transcript. {{ input.src }} Identify the
discomfort level (low, medium, high), provide a brief description of the
discomfort, and list the symptoms the patient complains about.” The
analyst then defines three new attributes for the LLM to populate
(Fig. 3D). Before committing to processing their entire dataset, they

enable document sampling (10 documents; Fig. 3E) and click “Run”
to quickly test their pipeline.

4.2.2 Inspection Phase (D2). The analyst reviews results in the
table view (Fig. 3F), where each row represents a document and
columns show attributes. Hovering over eye icons for each row
(Fig. 3G) reveals the exact LLM prompt, enabling verification that
the Jinja template was specified correctly (D4). Noticing the unex-
pected distribution of discomfort levels in column headers (Fig. 3H)—
mostly “medium” or “high”—the analyst investigates by sorting
documents (Fig. 3I), resizing columns (Fig. 3J), and scanning de-
scriptions. This reveals a misalignment: LLM outputs are focused
on patients’ physical symptoms rather than the analyst’s intended
measure of patient openness and comfort level during the visit—
which the analyst confirms by searching for specific terms in source
documents (Fig. 3K).

4.2.3 Improvement Phase (D3). After reviewing outputs in the
table, the analyst selects an attribute for closer examination (Fig. 4A),
opening a full-screen dialog with document navigation capabilities
(Fig. 4B). Using the In-Situ User Notes feature, the analyst adds
a note in the inspector panel (Fig. 4D): “the discomfort level should
be about how comfortable, behaviorally, the patient is (not about
the physical symptoms per se)” and tags it as red.3 After reviewing
multiple documents, they return to the main interface where all
notes are accessible, searchable, and filterable (Fig. 4E).

The analyst initiates the Prompt Refinement workflow by
clicking “Improve” in the operation card (Fig. 5A), opening a dialog
with their current prompt and any relevant notes (Fig. 5B). After pro-
viding any optional additional instructions and clicking “Continue
to Analysis,” the user gets an improved prompt emphasizing behav-
ioral aspects of discomfort (Fig. 5C), visualizing changes between
versions. The analyst can directly edit the suggestion (Fig. 5D) or
request further AI modifications (Fig. 5E) before saving.

4.2.4 More Iteration. After running the pipeline again (Fig. 5F), the
analyst notices improved discomfort level distributions (Fig. 5G),
with many documents now correctly classified as “low” discomfort.
The analyst moves on to analyzing the extracted symptoms. While
they are inspecting symptom outputs, DocWrangler notifies the
user (Fig. 6A) that the operation may be too complex (D3). Clicking
on the notification triggers the the Operation Decomposition

feature. A dialog appears, showing examples of incorrect LLM re-
sults when handling both discomfort assessment and symptom
extraction simultaneously (Fig. 6B). The analyst clicks “Automati-
cally Decompose” (Fig. 6C), and the system transparently streams
its accuracy optimization process (Fig. 6D), evaluating different
candidate plans with LLM-as-judge evaluators [105] (D4). After
a few minutes, DocWrangler then shows a visualization of the
restructured pipeline (Fig. 6F) that processes the same task but di-
vides the work across multiple operations—first breaking the data
into manageable chunks with a split operation, processing each
chunk separately with the original map operation, and then using a
reduce operation to unify the results.

3Users can color-code notes (e.g., red for critical issues, green for positive observations)
similar to qualitative analysis tools [90, 94].

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

A

B

C

D E

G

F

Figure 5: Prompt Refinement workflow (D3). (A) User initiates improvement via “Improve” button. (B) A dialog opens, showing

the current operation and the user’s relevant in-situ notes. (C) AI suggests improved prompt addressing notes (focusing on

behavioral discomfort). (D) Improved prompt includes behavioral indicator examples. (E) User can edit the suggestion directly,

or instruct the AI to edit it. (F) User runs updated operation. (G) Results show a more accurate discomfort distribution.

B

C

DE

A

Figure 6: The Operation Decomposition workflow (D3). (A) A notification suggests decomposing a complex operation, simul-

taneous extraction of discomfort and symptoms for long documents. (B) A dialog explains why the operation exceeds LLM

capabilities, with examples of inconsistent outputs. (C) User can automate decomposition or ignore. (D) System shows real-time

optimization process with reasoning (e.g., evaluation criteria for determining the best decomposition). (E) The resulting pipeline

splits documents into chunks, executes the original operation on each chunk, and has another operation to unify results.

Steering Semantic Data Processing With DocWrangler

4.3 Implementation Details

Here, we describeDocWrangler’s implementation details.DocWran-
gler is built with Next.js and TypeScript on the frontend (styled
with TailwindCSS), and a Python-based FastAPI backend. The fron-
tend uses Monaco Editor for writing operations and ReCharts (a
React wrapper around D3) for visualizations. The backend compiles
the visual pipeline into DocETL’s execution format and processes
documents in parallel, streaming real-time updates via WebSockets.
Pipeline definitions, user notes, and datasets are stored on disk (or
S3 for the public deployment). User notes are additionally cached
in browser storage for faster querying. To optimize performance,
we use Python’s diskcache library for caching operation outputs,
keyed by document ID and operation sequence hash. Only modi-
fied operations and downstream steps are recomputed. The output
inspector automatically generates visualizations based on attribute
type [58, 93]. For numerical attributes, we render 7-bin histograms.
For boolean attributes, we use 2-bin bar charts. For string data, we
first assess whether it is categorical (fewer than 50% unique values).
If so, we display bar charts of the top 7 values; if not, we show word
counts for multi-word outputs and character counts for single-word
outputs. All charts use virtual scrolling to support large datasets.

DocWrangler is containerized via Docker for open-source use,
and hosted on Modal Labs’ cloud platform for the public version.
Users provide their own LLM API keys. In the following paragraph,
we describe implementation details for the AI-assisted features.

Assisted Prompt Refinement. Our Prompt Refinement feature
relies on a representation of user notes. We store user notes as a list
of tuples, where a note is a tuple containing: operation identifier,
attribute name, free-text comment, and an optional category tag
for color-coding. Our system uses a conversational AI interface
but presents a specialized revision UI rather than a traditional chat
(Fig. 5E). The interface displays only the latest AI-suggested prompt,
highlighting the diff, while maintaining conversation context in the
background. When users initiate prompt refinement, DocWran-
gler gathers in-situ user notes relevant to the operation and the
corresponding documents, then sends an AI assistant, powered
by gpt-4o-mini, a message containing the current prompt, output
schema, a sample of documents, in-situ user notes and correspond-
ing documents, and basic prompt engineering guidelines (i.e., be
clear, unambiguous, and provide few-shot examples if possible). We
also instruct the AI assistant to return structured content with new
prompts enclosed within <prompt> and </prompt> tags and schema
changes within <schema> and </schema> tags for easy parsing. The
AI’s response is streamed in real-time.

Whenever users edit a prompt directly or provide feedback to
the AI assistant, we append a new message to the conversation
history. For direct edits, we create a canonical message recording
that the user changed X to Y; for feedback, we include the user’s
instruction to the LLM. All revisions are managed in a tree structure,
visualized as an interactive diagram, where each node represents
a prompt version. This diagram appears when the user clicks the
“Add Feedback” button (Fig. 5E). Users can navigate to any previous
revision point and create new branches as needed. For a more
detailed screenshot of the revision tree, see Fig. 11 in Appendix A.

Table 2: Participant demographics and study tasks.

ID Background Dataset Tasks

P1 Data Science, AI Medical Transcripts T1, T4
P2 Data Visualization Medical Transcripts T2, T3
P3 Operations Management Medical Transcripts T1, T4
P4 Data Science Medical Transcripts T2, T3
P5 Machine Learning Engineering Safety Records T1–T3
P6 Data Science Pres. Debates T2, T4
P7 Data Science Medical Transcripts T2, T3
P8 Data Science Privacy Policies T1, T2
P9 Medicine Medical Transcripts T2, T3
P10 Data Science Pres. Debates T1, T3

Automated Operation Decomposition Assistance. After each
pipeline run, DocWrangler automatically evaluates output accu-
racy using an LLM-as-judge approach in the background [72, 105].
DocWrangler samples five resulting documents and queries gpt-
4o-mini in a single prompt to assess whether outputs meet criteria,
returning True or False. For False results, DocWrangler then
queries the LLM again to generate specific failure reasons and im-
provement suggestions, which are displayed as non-intrusive notifi-
cations. When users accept decomposition suggestions, DocWran-
gler invokes DocETL’s accuracy optimizer to generate and test
multiple candidate plans, or decomposed versions of the operation,
and return the highest-accuracy plan (according to the LLM-as-
judge). All optimization logs are streamed to the UI in real-time.
Managing Context Windows for AI-Assisted Features. Our
AI-assisted features (refinement, decomposition, and the general-
purpose chatbot) must handle limitations of the context window,
or the maximum input size an LLM can process in one request.
Since we include sample documents with every LLM interaction
to provide necessary background, our messages often exceed the
context window limit (128,000 tokens for gpt-4o-mini). To address
this, we dynamically reduce content size before invoking the LLM.
We first calculate the total token count of the entire conversation
using gpt-tokenizer [11]. If it exceeds the limit, we determine how
many tokens to remove and distribute this reduction equally across
the sample documents in the first message only—maintaining sub-
sequent conversation history intact. For each document, we remove
text from the middle while preserving beginnings and endings, re-
placing the removed content with an ellipsis. Essentially, as the
conversation history grows, documents progressively lose more
middle content to accommodate new messages within the context
window.We specifically preserve document beginnings and endings
because introductions typically contain key metadata and conclu-
sions often summarize content, both important for maintaining
document context for the LLM.

5 User Study

Using DocWrangler as a design probe, we sought to understand
both the tool’s effectiveness and how people make progress in
semantic data processing through a task-based, think-aloud study.
Participants and Recruitment. We recruited 10 participants via
a call on the DocETL Discord server. While small, this size is cor-
roborated by prior work suggesting that even five participants can
uncover valuable usability insights [60]. All participants had prior
experience using LLMs, with varied backgrounds in data processing.
Four had previously used DocETL. Roles included software and ML

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

Table 3: Datasets and tasks used in our study.

Dataset Tasks

Medical Transcripts T1: Extract patient name, age, and gender
T2: Analyze known risk factors for illnesses
T3: Analyze symptoms and associated medical advice
T4: Analyze patient discomfort vs. illness type

Presidential Debates T1: Extract humorous quotes
T2: Track how discussion of topics changes over time
T3: Identify evaded questions/topics
T4: Identify topics discussed by each party

Safety Records T1: Extract incident location
T2: Extract involved persons
T3: Classify report behavior type

Privacy Policies T1: Extract CCPR and GDPR mentions
T2: Extract retention durations with cited regulations

engineers, data scientists, startup executives, medical professionals,
and graduate students in CS and social science. All participants
consented to audio and video recording. Table 2 summarizes their
backgrounds and datasets.

Study Protocol. Following approval from our Institutional Re-
view Board (IRB), we conducted one-hour long task-based sessions
with each participant via video-conferencing over Zoom. Each
session began with a 15-minute onboarding demo using a simple
map-reduce pipeline. This walkthrough introduced DocWrangler
prerequisites and features: dataset inspection, pipeline construc-
tion, pipeline execution, output inspection, and use of the AI assis-
tant chatbot. Then, participants were given a choice between two
datasets—medical transcripts and prosidential debates for the study
tasks. Six participants selected the former, while two participants
selected the latter. Two participants brought their own document
datasets for the study; P4 brought a dataset on public safety records,
while P8 brought a dataset with web-scraped privacy policies. Par-
ticipants were then asked to complete at least two predefined tasks
on their chosen dataset (Table 3). They spent 40 or more minutes
completing tasks, and were encouraged to think aloud and ask
questions as needed. After the tasks, we collected feedback through
open-ended reflections and Likert-scale ratings on IDE usability
and comfort. We also asked follow-up questions about challenges
with LLMs and expressing intent in DocWrangler.

Analysis. We used Zoom’s auto-generated transcripts, supple-
mented by our notes, to document each session. Four authors inde-
pendently conducted open coding of notes and transcripts, followed
by two rounds of axial coding [88] to identify recurring themes.

6 User Study Findings

In this section, we discuss our qualitative findings from our study.
Informally, we were interested in studying how participants design,
iterate, evaluate, and debug their pipelines in DocWrangler to
navigate the gulfs of comprehension, specification, and generaliza-
tion in Fig. 1. All participants (𝑛 = 10) found the IDE to be useful,
and appreciated DocWrangler’s potential for diverse document
analysis tasks. Participants rated the ease of using DocWran-

gler for the semantic data processing task highly on a 7-point

Likert scale (median = 6.5, mode = 7), with 80% selecting 6 or 7

and no ratings below 5. Our key findings are as follows:

P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

Participants

0

3

6

9

12

15

18

21

Nu
m

be
r o

f I
ns

ta
nc

es

2

6

6

6

3

3

4

5

8

3

5

5

5

4

4

6

6

5

4

8

8

4

5

5

3

3

2

5

8

8

Distribution of Logged Activities across Study Sessions
Initialize
Inspect
Improve

Figure 7: Participant actions by phase: Initialize (create/edit

operations), Inspect (review outputs), and Improve (refine

prompts or decompose operations). Engagement was bal-

anced across phases, with frequent transitions between them.

• Users manipulate semantic operations to aid validation, by re-
questing explanatory rationales or overly specific output at-
tributes, and transforming open-ended tasks into structured clas-
sification problems;

• Users opportunistically realign their pipelines by discovering
both limitations of and possibilities with LLMs, pivoting between
task refinement and goal reformulation; and

• Users struggle with making sense of LLM-generated outputs
at scale, requiring better provenance tracking and visualization
tools tailored to semantic data processing.

We subsequently expand on our findings.

6.1 Users Manipulate Semantic Operations to

Bridge the Gulf of Comprehension

While participants differed in how they constructed their pipelines—
most (𝑛 = 7) built and inspected outputs of one operator at a
time, while others (𝑛 = 3) created complete map-reduce (i.e., extract-
summarize) pipelines before inspecting outputs—participants sim-
ilarly repurposed semantic operations in creative ways to make
sense of outputs. We observed two main approaches: modifying
LLM outputs to be easier to scan and interpret, and converting
open-ended tasks into more structured classification problems.

6.1.1 Users modify output content and formatting to make it easier
to interpret LLM behavior. To better understand LLM behavior at
a glance, participants often adjusted operation outputs for inter-
pretability. P1 and P8 added “reasoning” attributes to operation
output schemas, with P1 noting this would “force the LLM to explain
its process.” P6 created separate map operations to generate sum-
maries of extracted attributes, observing that these could “reduce
the amount of data that you’re [manually] processing and validating
in the pipeline, considerably.” Participants also adjusted the presen-
tation of outputs to support manual validation. Some (P2, P3) used
In-Situ User Notes to request output reformatting (e.g., bulleted
lists), making results easier to scan. P8 added boolean indicator
attributes (e.g., has_GDPR_mention) to filter by specific mentions in
the output table, then applied a reduce operation to summarize the
behavior of the preceding map—without reviewing its full output

Steering Semantic Data Processing With DocWrangler

manually. Importantly, these added attributes (e.g., rationales, sum-
maries, indicators) were not used as final task outputs. Instead, they
served to help participants verify whether the LLM had correctly
interpreted their intent—bridging the specification gulf illustrated
in Fig. 1. Reviewing these structured outputs often triggered In-

Situ User Notes, especially when outputs exposed interesting or
ambiguous patterns. For instance, P9 (a doctor) noticed frequent
mentions of “back pain” when operation outputs were formatted
as bulleted lists. Drawing on their medical knowledge, they recog-
nized this as a commonly reported symptom and filtered outputs
containing “back pain” in the output table viewer to read mentions
of “back pain” in the original documents and analyze its context
with other reported conditions. They then annotated those outputs
using In-Situ User Notes to clarify context for the LLM; e.g., ex-
plaining the difference between “acute” and “chronic” back pain;
the latter co-occurring with long-term conditions.

6.1.2 Users transform open-ended tasks to classifier-like tasks. To
make validation more manageable, participants often reframed
open-ended tasks as classification problems (P1, P4, P5, P8, P9, P10).
P1 described this as “treating the LM like a classifier”—examining
class-based outputs to check for meaningful differences. For ex-
ample, when analyzing doctor-patient trust, P1 initially used a
free-form trust_summary attribute, but added a boolean trust at-
tribute to validate results more easily via a histogram. As shown
in Fig. 8, the LLM labeled all examples as “true,” so P1 switched to
a 5-point Likert scale for more granularity. While the scores were
still skewed high, the distribution revealed more variation. P1 noted
that they could apply a code-based rule (e.g., score >4) to interpret
the results as binary, and used the differences between low and
high scores to identify behavioral signals (e.g., patient stuttering),
which they annotated using In-Situ User Notes.

Even when tasks didn’t lend themselves to “validation by his-
togram,” categorical attributes enabled more systematic inspection.
For example, P10 wrote an operation to extract a list of quotes
containing logical fallacies from each debate transcript, then added
a fallacy_type attribute to label each quote (e.g., strawman, ad
hominem). Subsequent grouping by type made it easier for P10
to spot errors, since the LLM performed better on some fallacies
than others. Some participants developed more sophisticated ap-
proaches; e.g., P5 requested the AI chatbot assistant to automatically
generate a taxonomy of document types to use in a map operation,
and P9 created a hierarchical taxonomy themselves and edited their
prompt to include this taxonomy.

6.2 Users Iteratively Refine Pipelines to

Navigate All Gulfs

Unlike typical data science workflows where users begin with ex-
ploratory data analysis [57], all participants skipped manual docu-
ment review and jumped straight into writing map operations. As
they inspected outputs, they frequently revised their pipelines in
response to what they saw—what we call opportunistic realignment.
This realignment helped users bridge gulfs in Fig. 1—the specifi-
cation gulf, by refining prompts and operations to better express
their intent; and the generalization gulf, by tuning their workflows
to improve alignment with the quirks of their specific data.

Does the patient trust
their doctor? Respond
in True or False by
looking at the
following medical
consult transcript:

{{input.src}}

Ma
p

Map as Classifier

O
ve

r-
pa

rti
tio

ni
ng

 fo
r i

m
pr

ov
ed

 a
na

ly
si

s

Classification Output

v1

Does the patient trust
their doctor? Rate
patient trust level on a
scale of 1 to 5 for this
medical consult
transcript:

<Trust Scale Definitions>

{{input.src}}

Ma
p

v2

Figure 8: Participants converted open-ended prompts into

classification tasks for easier debugging. Here, P1 used a bi-

nary version (v1) that yielded uninformative results (100%

“true”), then switched to a 5-point scale (v2) for higher accu-

racy. P1 could then apply a code-based rule (e.g., score >4) to

interpret the results as a binary outcome.

Realignment occurred when users discovered either limitations
in what the LLM could do, prompting debugging or operation de-
composition, or possibilities that surfaced through surprisingly
useful outputs. In both cases, users adjusted their goals or prompts
based on what they learned from the system’s behavior. Interest-
ingly, even though the Operation Decomposition feature was
designed to help address the generalization gulf, users sometimes
adopted it as a way to improve specification too—using suggestions
to rethink how they framed their tasks or restructure their prompts.

6.2.1 LLM limitations lead users to reframe their goals. Participants
often encountered LLM limitations that forced them to pursue al-
ternate ways of accomplishing the same high-level task (P1, P4,
P6, P9). These alternate paths often emerged after inspecting out-
puts and realizing the LLM misunderstood the original intent. For
instance, in a medical information extraction task, P4 wanted to ex-
tract unique symptoms that patients mentioned in the conversation
transcripts. However, the LLM frequently returned near-duplicate
entries like “pain when pressure applied,” ”pain when lying down,”
and “pain when sleeping.” P4 instead had wanted a small set of
unique symptoms, grouping related variants in parentheses, e.g.,
“pain (when pressure applied, when lying down)”. P6 faced a similar
issue in a political debate analysis task. Their initial prompt pro-
duced long-winded topic summaries that buried the main points.
They hadn’t originally planned to constrain output length, but after
reviewing the verbose outputs, realized they preferred more concise
descriptions—and added explicit brevity instructions.

In realigning with the LLM’s interpretation of the pipeline, users
discovered limitations in common prompt engineering strategies
(P1, P4). P1 initially wanted to include successful output examples
(and corresponding documents) in their prompts [92] but realized
that the documents contained too much irrelevant information,
making it difficult for the LLM to infer what made these outputs
successful. P1 spent considerable time reasoning about the LLM’s in-
ferential capabilities, repeatedly shifting between output checking,
providing notes, and prompt refinement—disrupting flow [87].

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

Some participants redistributed work between semantic (LLM)
and code-based components (P2, P4).When analyzing doctor-patient
transcripts, P2 and P4 initially used a semantic map-reduce pipeline
to extract and summarize symptoms. However, the reduce operation
often overgeneralized, collapsing distinct mentions like knee pain”
and back pain” into simply “pain.” To preserve symptom specificity,
they replaced the semantic reduce with a code-based reduce that
used string matching to tally each extracted symptom (maintaining
distinctions between similar symptoms like “knee pain” and “pain
in the knee” that would be counted as separate items even though
they represent the same underlying condition). P4 then added a
second map operation that used an LLM to generate a comprehen-
sive report incorporating both the raw symptom extractions and
their frequency counts—giving the LLM the discretion to merge re-
lated symptoms while using the frequency data to highlight which
symptoms were most common across the dataset.

Over time, participants effectively navigated the specification
gulf (Fig. 1) through iteration. P9 reflected that their process was sur-
prisingly systematic—“more like iteration and problem articulation
[based on what the LLM can do], not trying random things.” In this
way, LLM interaction became a medium for clarifying analytical
goals—echoing Schön’s notion of reflection-in-action [68].

6.2.2 Unexpected possibilities can also shift analytical goals. Not
all pivots were due to limitations. Some users shifted direction
after spotting surprising or useful patterns in the LLM’s outputs.
These “serendipitous” findings weren’t requested explicitly, but
appeared occasionally, revealing new opportunities for analysis.
For example, P9 initially wanted to extract symptoms from doctor-
patient transcripts, but noticed that the LLM also surfaced relevant
patient history for a few outputs. They found this helpful—it both
improved LLM accuracy and made outputs easier to validate—so
they updated the prompt to also extract medical history. Others
(P6, P10) discovered desirable output structures they hadn’t asked
for—like bulleted lists or Markdown formatting—and revised their
prompts to consistently request those formats.

Participants also encountered meaningful patterns or categories
in the data that they hadn’t explicitly asked for (P1, P5, P7-P10).
For instance, while analyzing public safety records, P5 noticed that
some outputs described the roles of people involved in each incident.
They realized these roles could reveal the type of document—such as
a witness statement versus a legal document—and used this insight
to refine their pipeline. P9 became aware of this emerging process
and coined the term “prompt rubber ducking” to describe how
interacting with LLMs helped them figure out what questions to
ask about their data. In this way, semantic data processing pipelines
don’t just answer predefined questions, they also help shape users’
understanding of what questions are worth asking—perhaps similar
to the “berry picking” model of information seeking, where users
iteratively refine their search as they gain new insights [6].

Despite frequent shifts in focus (e.g., inspecting, reflecting, refin-
ing), users maintained a strong sense of progress throughout. This
stemmed from two factors. First, system responsiveness allowed
rapid iteration, impressing users (P1, P3-P5, P8, P9). For example,
P8 expanded a GDPR compliance analysis to include CCPA patterns
simply by changing “GDPR” to “CCPA” in the prompt, and results
appeared within seconds. Second, output schemas acted as what

P8 described as “speed breaks”, slowing exploration just enough for
meaningful reflection. We observed that several participants (P2,
P6, P7) visibly slowed down when writing these schemas. Output
schemas served as “semantic” type checks—a form of validation
analogous to type checks in traditional programming [14].

6.2.3 Decomposition Actually Supports Both Generalization and
Comprehension. Although the Operation Decomposition fea-
ture was originally designed to address the generalization gulf in
Fig. 1—by helping users improve output accuracy across diverse
documents—participants also used it to navigate the comprehension
gulf, helping them understand how the LLM interpreted their data.
The decomposition analysis inspired alternate task explorations,
temporarily “unblocking” the user (P2, P4, P5, P9). All participants
reviewed decomposition suggestions at least once, but only some
(P2–P4, P8, P10) allowed DocWrangler to automatically apply
them. A key factor in whether participants accepted suggestions
was their confidence in implementing the changes on their own.
When users felt capable of restructuring an operation, they pre-
ferred to use decomposition insights as inspiration—either to man-
ually rewrite prompts or provide In-Situ User Notes (P2, P3). But
when the suggestions felt too complex or outside their expertise,
they opted into automatic decomposition (e.g., P5 for entity res-
olution, or P4 when they “wanted the system to do it better”). P4
explicitly invoked decomposition when they could not articulate
the issue as a pipeline refinement, explaining “I feel like there’s a
gap in me understanding how to reconcile what’s being suggested and
what’s being set up.”

Importantly, evenwhen participants chose to implement changes
themselves rather than accepting automatic decomposition, they
still benefited from DocWrangler’s ability to identify issues they
might have missed. For example, while manually verifying every
extraction across all documents was impractical, it was much easier
for participants confirm whether the decomposer’s specific notifica-
tions about missed information were accurate (P4, P9). AI-assisted
analysis, in this way, helps users bridge the comprehension gulf by
pinpointing specific data they might otherwise overlook.

6.3 Participants Identified Gaps in Tooling

Participants pointed out specific limitations in DocWrangler that
made it harder to interpret or reason about LLM outputs. These
gaps often came up as feature requests, highlighting needs for better
support with pattern discovery, provenance tracing, and operation-
specific visualization.
The Necessity of Bottom-up Validation. All participants recog-
nized that they were spending a lot of time validating outputs, and
some explicitly requested to automate this with LLM-as-a-judge ap-
proaches (P4, P7). Rather than defining evaluation criteria upfront or
using a top-down approach, as prior work suggests [39, 51, 72], par-
ticipants (P2, P4) preferred to discover criteria bottom-up through
hands-on review—similar to qualitative coding [88], but prompted
by LLMs identifying both interesting patterns and outliers. P4 con-
sidered writing an operation to validate the previous operation and
began thinking of a rubric to put in the prompt, but realized they’d
need to review many outputs first to come up with this rubric, and
then repeat this process after each pipeline change. With goals shift-
ing frequently, this felt impractical. Others (P1, P2) requested tools

Steering Semantic Data Processing With DocWrangler

for organic pattern discovery, such as P1’s request for side-by-side
comparisons of LLM outputs across diverse, automatically-selected
documents, to more easily spot issues and provide in-situ notes.
Additional Support for Inspecting Provenance. Participants
wanted easier ways to trace how LLM outputs were derived from
the source text without having to manually search documents or
write custom checks (e.g., a code-based filter after each map). Some
(P2, P8, P9) requested that outputs be directly linked to their source
text, with the relevant span highlighted. However, simple checks for
the presence of terms don’t guarantee the operation was performed
correctly. For example, the LLM listed “muscle aches” as a symptom,
even though it appeared only in the doctor’s question—not as some-
thing the patient reported, showing how surface-level matches can
be misleading (P9). Moreover, users wanted DocWrangler to trace
errors to their source. For example, when P4 reviewed extracted
medication information, there were incorrect dosages in the source
text (e.g., “200g” instead of “200mg”) that the LLM faithfully re-
produced. This highlights how LLM pipelines blur the boundary
between data cleaning and analysis, unlike traditional workflows
where these phases are less intertwined [36, 57]. We never observed
participants creating dedicated cleaning operations—perhaps, as
P2 mentioned, because they expected LLMs to implicitly clean data
(e.g., recognize that 200g” is not a valid medication dose).
Operation-Specific Visualization Tools. Users requested richer
visualizations beyond basic histograms and bar charts (P4, P5, P7,
P10), with needs varying by operation type and data domain. P7 re-
quested LLM-generated custom charts. P4 asked forDocWrangler
to track output distribution changes between iterations, particularly
when using map operations as classifiers (Section 6.1.2).

7 Real-World Deployment and Usage

To complement our qualitative user study, we deployed DocWran-
gler as a public web application, collecting telemetry data from over
1,500 pipeline executions across two months. We used DocWran-
gler itself to analyze this telemetry data, manually verifying a
sample of 50 extractions and classifications.4 Wewill discuss the do-
mains and document types in whichDocWranglerwas used, com-
mon task patterns and pipeline structures, how pipelines evolved,
and how users engaged with AI assistance features.
Pipeline Data, Task, and Model Patterns. DocWrangler was
used across a range of professional domains. Common applica-
tions included legal (e.g., contract clause extraction), healthcare
(e.g., analyzing clinical case studies), finance (e.g., parsing invoices
and budgets), and education (e.g., generating test questions from
textbooks). Other frequent use cases involved customer feedback
analysis, government document processing, and media or news
content analysis. About 50% of documents were semi-structured
with hierarchical sections, though often inconsistently formatted.
Unstructured text was the next most common, typically in PDF
format. Pipelines spanned 9 languages: English, Spanish, Chinese,
German, Russian, Japanese, Italian, Greek, and Persian.

Most pipelines centered on a few key task types. Extraction
was most common, appearing in over half of all pipelines—from

4Our analysis involved three map-reduce pipelines with gpt-4o; one for each topic
(e.g., usage domains and document types). Our total analysis cost was $9.39 USD.

pulling out existing structure to identifying semantically meaning-
ful entities in the absence of structure. Classification ranked second,
typically categorizing documents or content. Summarization usu-
ally followed these steps using reduce operations. Most workflows
followed a simple pattern: extract, classify, then summarize, but
some domains exhibited different patterns. For example, in busi-
ness analysis, users built complex pipelines (sometimes with 15+
operations) that performed sequential extractions—first identifying
entities like departments and processes, then mapping relation-
ships, and finally generating reports. In the legal domain, pipelines
were often multi-step as well, but focused on extracting varied or
less-related entities, such as claims and case law references. For
research domains, pipelines often involved more open-ended pat-
tern discovery across documents with map operations—then more
structured map-reduce pipelines. Most pipelines were simple: 75%
had two or fewer operations, and 90% had no more than three. But
5% had more than five operations, and a few pipelines exceeded 30,
reflecting highly customized workflows.

Pipelines used different AI models. gpt-4o-mini (our default
model) was the most common model, used in 82% of pipelines.
gpt-4o appeared in 12% of pipelines, typically for more complex
workflows or in combination with gpt-4o-mini. Gemini models
were used in 17%, often for PDF processing. Claude-3.5-sonnet
showed up in 9%, mainly for classification. 18% of pipelines used
multiple models.

Pipeline Evolution Patterns.We analyzed how users modified
their pipelines over time by examining consecutive pipeline ver-
sions created within 5-minute intervals. We observed three main
evolution patterns: 53% of pipelines grew more complex by adding
operations or upgradingmodels; 18% actually became simpler through
operation consolidation or reduced sample sizes; and 29% main-
tained the same operations while only changing prompts or output
schemas. We also tracked how prompts evolved: 47% became more
specific with structured schemas and domain-specific language;
16% moved toward simpler prompts (following the “prompt rubber
ducking” strategy mentioned in Section 6.2.2); and 37% maintained
similar detail levels with minor refinements.

AI Assistance and Challenges.We tracked AI assistance features:
prompt improvement (150 instances) and general AI chat (95 in-
stances). Surprisingly, for prompt refinement, over half of these
cases involved users refining their prompts without providing any
notes. Users were invoking prompt refinement proactively to trans-
form their vague, poorly-specified instructions into more concrete
and executable prompts; for example, one user invoked prompt
refinement to transform a prompt like “Extract the information from
the ledger” into a detailed 10-line specification identifying precise
fields to extract and noting important context, such as “these are
scans of handwritten documents.” This reveals how users often strug-
gle with formulating effective prompts from the outset. Through
the AI chat, users asked general questions about syntax, workflow
creation, and supported file formats. Some users still expressed
frustration when their prompts didn’t work as expected, with notes
like “MAP THEM ALL SYSTEMATICALLY!!!!!!!!” and “WHY IS THIS
SO HARD?!” These challenges suggest we need better guidance and
clearer explanations of DocWrangler’s capabilities and limita-
tions, particularly for new users.

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

8 Discussion

Here, we discuss what our findingsmean for current data processing
systems and human-AI collaboration more broadly.

Designing Better Semantic Data Processing Tools. DocWran-
gler is an early attempt at building an IDE for semantic data pro-
cessing, which taught us a lot about how users interact with data
analysis workflows with LLM-powered operators. Based on our
findings, we reflect on opportunities for future semantic data pro-
cessing systems.

When building DocWrangler, we realized that bridging the
specification gulf involves two different challenges: finding the
“right” question to ask (i.e., intent discovery) and clearly expressing
that question in the pipeline (i.e., refining ambiguity). While we
tried to address both with the same features inDocWrangler, they
are fundamentally different. Discovering intent is exploratory: users
need to understand what’s interesting or important in their data be-
fore formulating precise questions. For structured data, we already
have effective tools for kick-starting exploration, by automatically
discovering and surfacing typical patterns or outliers [44, 76, 95] or
by letting users search for specific patterns through sketching or
demonstration [7, 30, 77]. However, these approaches need reimag-
ining for unstructured data and semantic processing. It’s not clear
what constitutes a “document anomaly,” or how to tell whether
documents are meaningfully different in size, structure, or content.
Future systems could address this challenge and help proactively
highlight patterns in the underlying documents, ultimately making
it easier for humans to decide what they want to query. In contrast,
clarifying intent—once identified—is about precise specification and
addressing ambiguity, and may be more amenable to automation.
Systems can suggest more precise wording and recommend better
alignment with how LLMs interpret instructions (similar to how
we supported prompt refinement in DocWrangler).

Additionally, our study revealed several debugging strategies
that future systems could partially automate. For example, users
frequently transformed unstructured extraction tasks into more
structured ones to make validation easier (Section 6.1.2)—so, sys-
tems could detect when outputs lack structure and automatically
suggest complementary structured attributes to aid validation. Sim-
ilarly, when systems detect skewed output distributions (like P1’s
all-“true” trust classifications in Fig. 8), they could automatically
rewrite prompts to yield more useful variations. Systems could
also automatically generate rationales as interpretability tools (Sec-
tion 6.1.1), by providing explanations, clustering or finding anoma-
lous examples, and presenting these for review to help users spot
intent-interpretation mismatches.

Overall, semantic data processing, and the advent of LLMs, has
the potential to change how we build the next generation of data
systems [21] that combine both structured and unstructured data
processing capabilities. Our systems are no longer “passive” execu-
tors of fixed specifications like traditional data processing tools;
instead, they must help users express and refine semantic needs
through their pipelines [102]. To make semantic data processing
truly usable, we must design systems that actively bridge all three
gulfs—between users’ intentions, pipeline specifications, and un-
derlying data—be it in a structured or unstructured context.

Semantic Data Processing as a Lens on Human-AI Collabo-

ration. Semantic data processing serves as a rich domain to study
effective human-AI collaboration. The interaction triangle shown
in Fig. 1 may generalize to other human-AI systems if we recognize
that “data” might be much smaller or take different forms than
document collections (e.g., a single essay, a piece of software). Con-
sequently, our findings might offer insights for designing effective
human-AI systems across domains.

First, we reflect on how to design AI systems. We observed users
creating what creativity support tool (CST) research calls epistemic
artifacts [89]—exploratory objects that help users discover possibil-
ities. Early pipeline iterations served as epistemic artifacts, helping
users learn about their data rather than being final solutions, simi-
lar to how artists explore materials before creating finished works.
Though DocWrangler wasn’t intended to be a CST, it functioned
as one because tasks had inherent fuzziness, and users learned
about either their preferences or the task itself through LLMs. In
this way, any system addressing ambiguous tasks may benefit from
CST design principles; e.g., supporting exploration without pre-
defined goals and allowing movement between different levels of
abstraction [46, 89].

Then, like CSTs, AI systems must preserve user agency [31].5 To
maintain this agency, prior work suggests using shared represen-
tations of information that both humans and AI can modify [27],
or creating different representations that give users varying lev-
els of control [67]. Our work adds another perspective: creating
moments for user reflection [68]. For example, our in-situ notes
feature allowed (perhaps even encouraged, due to its ubiquitous
presence) users to record thoughts. We also unintentionally created
reflective spaces: e.g., output schema definitions slowed users down,
prompting their reflection on their goals (P8).

We also reflect on what to design for AI systems. Each gulf in
Fig. 1 represents a distinct design challenge, with multiple possible
approaches to address each one (not just what DocWrangler pro-
poses). Moreover, applications should offer features to reduce the
burden of navigating all gulfs, but specialized domains may benefit
from specialized approaches. For instance, AI image generators
already bridge the specification gulf with controls for attributes
like “realism,” “style,” and “composition”[10, 56, 66], but these sys-
tems can also address the generalization gulf by automatically flag-
ging semantic inconsistencies like anatomical errors or impossible
scenes—constraints users shouldn’t need to explicitly state if they
want high realism. In another example, an AI coding assistant could
use compilation errors to “self-refine” its generated code [52] (bridg-
ing the generalization gulf), while also maintaining these errors as
notes and summarizing them (aiding the comprehension gulf). Or,
consider an AI vacation planner: interactive visualizations of possi-
ble trips could help users comprehend both the recommendations
and what the AI has inferred about their preferences.

Overall, based on our work, we present the following recommen-
dations for building effective human-AI collaborative systems: (i)
design for epistemic artifacts that help users explore and understand
their problem space; (ii) create intentional moments for reflection
that maintain user agency amidst rapid AI-driven iterations; and

5We acknowledge that “agency” has been critiqued as an overly broad term in HCI [8];
here we also use it in this general sense, rather than referring to a specific definition.

Steering Semantic Data Processing With DocWrangler

(iii) develop features that explicitly address each of the three gulfs—
specification, generalization, and comprehension—recognizing that
bridging one gulf can indirectly help with others.

Limitations.We reflect on some limitations of our work. First, our
participants were all tech-savvy and had used LLM tools before,
with most having programming experience (though three had not
heard of map-reduce before). This may have affected how easily
they adapted to our system. Future work should include users with
varying technical backgrounds. Second, we only observed sessions
lasting 1-2 hours, while real document analysis often spans days
or weeks. Longitudinal studies could reveal how behavior evolves
over longer periods and in team settings. In our online deploy-
ment, as users needed to provide their own API keys for LLMs, our
user base is self-selecting—primarily comprising individuals who
discovered DocWrangler through blog posts and technical talks.
Additionally, some users, particularly those with more experience,
run DocWrangler on their own infrastructure, for which we lack
telemetry data. Finally, our findings come from observing users
with our specific system. While we believe the patterns we iden-
tified reflect fundamental aspects of human-AI interaction, more
research is needed to understand how they manifest across different
interfaces, LLM capabilities, and domains.

9 Conclusion

This paper introduced DocWrangler, a mixed-initiative IDE for
semantic data processing, where LLMs power familiar data oper-
ations like map and reduce on unstructured text. We contributed
three novel features to bridge the gulfs between users, their data,
and their semantic data pipelines: in-situ user notes, LLM-assisted
prompt refinement, and LLM-assisted operation decomposition.
Our evaluation through both a qualitative user study and large-
scale online deployment provides insights into how people adapt to
and use DocWrangler for their tasks; particularly, how they write
pipelines for the purpose of learning more about their data or LLM
capabilities. Finally, our work provides a reflection on how data sys-
tems could be redesigned for the LLM era and what semantic data
processing can teach us about effective human-AI collaboration
more broadly.

Acknowledgments

Weare grateful to ShmAlmeda, IanArawjo, TimothyAveni, Quentin
Romero Lauro, Yiming Lin, HCMoore, James Smith, J.D. Zamfirescu-
Pereira, and Sepanta Zeighami for their thoughtful feedback and
valuable discussions on our findings. We thank Preetum Nakki-
ran for inspiring the islands concept in Figure 1 and providing
moral support during its creation. Special thanks to our study par-
ticipants, whose insights and engagement were instrumental in
understanding how users interact with semantic data processing
systems. This work was supported by the National Science Foun-
dation (grants DGE-2243822, IIS-2129008, IIS-1940759, IIS-1940757,
1845638, 1740305, 2008295, 2106197, 2103794, 2312991), funds from
the State of California, funds from the Alfred P. Sloan Founda-
tion, and EPIC lab sponsors (G-Research, Adobe, Microsoft, Google,
Sigma Computing). Additional support was provided by Amazon
and CAIT. We thank Modal Labs for their generous compute credits.

SS is supported by a National Defense Science and Engineering
Graduate (NDSEG) Fellowship.

References

[1] Shm Garanganao Almeda, JD Zamfirescu-Pereira, Kyu Won Kim, Pradeep
Mani Rathnam, and Bjoern Hartmann. 2024. Prompting for Discovery: Flexible
Sense-Making for AI Art-Making with Dreamsheets. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. 1–17.

[2] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen,
et al. 2019. Guidelines for human-AI interaction. In Proceedings of the 2019 chi
conference on human factors in computing systems. 1–13.

[3] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. [n. d.]. Guidelines for Human-
AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow Scotland Uk, 2019-05-02). ACM, 1–13. https:
//doi.org/10.1145/3290605.3300233

[4] Eric Anderson, Jonathan Fritz, Austin Lee, Bohou Li, Mark Lindblad, Henry
Lindeman, Alex Meyer, Parth Parmar, Tanvi Ranade, Mehul A. Shah, Benjamin
Sowell, Dan Tecuci, Vinayak Thapliyal, and Matt Welsh. [n. d.]. The Design
of an LLM-powered Unstructured Analytics System. arXiv:2409.00847 [cs]
http://arxiv.org/abs/2409.00847

[5] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and
Elena L Glassman. 2024. ChainForge: A Visual Toolkit for Prompt Engineering
and LLM Hypothesis Testing. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–18.

[6] Marcia J Bates. 1989. The design of browsing and berrypicking techniques for
the online search interface. Online review 13, 5 (1989), 407–424.

[7] Leilani Battle, Remco Chang, and Michael Stonebraker. 2016. Dynamic prefetch-
ing of data tiles for interactive visualization. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. 1363–1375.

[8] Dan Bennett, Oussama Metatla, Anne Roudaut, and Elisa D Mekler. 2023. How
does HCI understand human agency and autonomy?. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. 1–18.

[9] Alan Blackwell and Thomas Green. 2003. Notational systems–the cognitive
dimensions of notations framework. HCI models, theories, and frameworks:
toward an interdisciplinary science. Morgan Kaufmann 234 (2003).

[10] Stephen Brade, Bryan Wang, Mauricio Sousa, Sageev Oore, and Tovi Gross-
man. 2023. Promptify: Text-to-image generation through interactive prompt
exploration with large language models. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology. 1–14.

[11] Bazyli Brzoska. 2025. gpt-tokenizer: A Token Byte Pair Encoder/Decoder for
OpenAI Models. https://www.npmjs.com/package/gpt-tokenizer Accessed:
2025-04-07.

[12] Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David Sontag,
and Ameet Talwalkar. 2024. Need Help? Designing Proactive AI Assistants for
Programming. arXiv preprint arXiv:2410.04596 (2024).

[13] Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit Gulwani, Chris Parnin,
Ashish Tiwari, and Austin Z Henley. 2023. Conversational challenges in ai-
powered data science: Obstacles, needs, and design opportunities. arXiv preprint
arXiv:2310.16164 (2023).

[14] Michael Coblenz, Chris Martens, and Luke Church. 2021. Programming Lan-
guages + Human-Computer Interaction: Continuing the story at SPLASH 2020.
SIGPLAN Blog. https://blog.sigplan.org/2021/07/06/programming-languages-
human-computer-interaction-continuing-the-story-at-splash-2020/ Accessed:
2025-04-03.

[15] Mary Czerwinski, Eric Horvitz, and Susan Wilhite. 2004. A diary study of task
switching and interruptions. In Proceedings of the SIGCHI conference on Human
factors in computing systems. 175–182.

[16] Hai Dang, Lukas Mecke, Florian Lehmann, Sven Goller, and Daniel Buschek.
2022. How to prompt? Opportunities and challenges of zero-and few-shot
learning for human-AI interaction in creative applications of generative models.
arXiv preprint arXiv:2209.01390 (2022).

[17] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data process-
ing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[18] AnHai Doan, Jeffrey F Naughton, Raghu Ramakrishnan, Akanksha Baid, Xi-
aoyong Chai, Fei Chen, Ting Chen, Eric Chu, Pedro DeRose, Byron Gao, et al.
2009. Information extraction challenges in managing unstructured data. ACM
SIGMOD Record 37, 4 (2009), 14–20.

[19] John J. Dudley and Per Ola Kristensson. [n. d.]. A Review of User Interface
Design for Interactive Machine Learning. 8, 2 ([n. d.]), 1–37. https://doi.org/10.
1145/3185517

[20] KJ Feng, Kevin Pu, Matt Latzke, Tal August, Pao Siangliulue, Jonathan Bragg,
Daniel S Weld, Amy X Zhang, and Joseph Chee Chang. 2024. Cocoa: Co-
Planning and Co-Execution with AI Agents. arXiv preprint arXiv:2412.10999

https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233
https://arxiv.org/abs/2409.00847 [cs]
http://arxiv.org/abs/2409.00847
https://www.npmjs.com/package/gpt-tokenizer
https://blog.sigplan.org/2021/07/06/programming-languages-human-computer-interaction-continuing-the-story-at-splash-2020/
https://blog.sigplan.org/2021/07/06/programming-languages-human-computer-interaction-continuing-the-story-at-splash-2020/
https://doi.org/10.1145/3185517
https://doi.org/10.1145/3185517

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

(2024).
[21] Raul Castro Fernandez, Aaron J Elmore,Michael J Franklin, Sanjay Krishnan, and

Chenhao Tan. 2023. How large language models will disrupt data management.
Proceedings of the VLDB Endowment 16, 11 (2023), 3302–3309.

[22] Katy Ilonka Gero, Chelse Swoopes, Ziwei Gu, Jonathan K Kummerfeld, and
Elena L Glassman. 2024. Supporting Sensemaking of Large Language Model
Outputs at Scale. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. 1–21.

[23] Madeleine Grunde-McLaughlin, Michelle S. Lam, Ranjay Krishna, Daniel S.
Weld, and Jeffrey Heer. [n. d.]. Designing LLM Chains by Adapting Techniques
from Crowdsourcing Workflows. arXiv:2312.11681 [cs] http://arxiv.org/abs/
2312.11681

[24] Ken Gu, Madeleine Grunde-McLaughlin, AndrewMcNutt, Jeffrey Heer, and Tim
Althoff. 2024. How do data analysts respond to ai assistance? a wizard-of-oz
study. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. 1–22.

[25] Sumit Gulwani. 2016. Programming by examples: Applications, algorithms, and
ambiguity resolution. InAutomated Reasoning: 8th International Joint Conference,
IJCAR 2016, Coimbra, Portugal, June 27–July 2, 2016, Proceedings 8. Springer,
9–14.

[26] Hossein Hassani and Emmanuel Sirmal Silva. 2023. The role of ChatGPT in
data science: how ai-assisted conversational interfaces are revolutionizing the
field. Big data and cognitive computing 7, 2 (2023), 62.

[27] Jeffrey Heer. 2019. Agency plus automation: Designing artificial intelligence
into interactive systems. Proceedings of the National Academy of Sciences 116, 6
(2019), 1844–1850.

[28] Jeffrey Heer, JosephMHellerstein, and Sean Kandel. 2015. Predictive Interaction
for Data Transformation.. In CIDR. Citeseer.

[29] Joseph M Hellerstein, Michael Stonebraker, James Hamilton, et al. 2007. Archi-
tecture of a database system. Foundations and Trends® in Databases 1, 2 (2007),
141–259.

[30] Harry Hochheiser and Ben Shneiderman. 2004. Dynamic query tools for time
series data sets: timebox widgets for interactive exploration. Information Visu-
alization 3, 1 (2004), 1–18.

[31] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. 159–166.

[32] Gary W Johnson and Richard Jennings. 2001. LabVIEW graphical programming.
McGraw-Hill Professional.

[33] Adam Tauman Kalai and Santosh S Vempala. 2024. Calibrated language models
must hallucinate. In Proceedings of the 56th Annual ACM Symposium on Theory
of Computing. 160–171.

[34] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank Van Ham,
Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brodbeck, and
Paolo Buono. 2011. Research directions in data wrangling: Visualizations and
transformations for usable and credible data. Information Visualization 10, 4
(2011), 271–288.

[35] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceed-
ings of the sigchi conference on human factors in computing systems. 3363–3372.

[36] Sean Kandel, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. 2012.
Enterprise data analysis and visualization: An interview study. IEEE transactions
on visualization and computer graphics 18, 12 (2012), 2917–2926.

[37] Majeed Kazemitabaar, Jack Williams, Ian Drosos, Tovi Grossman,
Austin Zachary Henley, Carina Negreanu, and Advait Sarkar. 2024. Improving
steering and verification in AI-assisted data analysis with interactive task
decomposition. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology. 1–19.

[38] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Ke-
shav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts.
[n. d.]. DSPy: Compiling Declarative Language Model Calls into Self-Improving
Pipelines. arXiv:2310.03714 [cs] http://arxiv.org/abs/2310.03714

[39] Tae Soo Kim, Yoonjoo Lee, Jamin Shin, Young-Ho Kim, and Juho Kim. 2024.
Evallm: Interactive evaluation of large language model prompts on user-defined
criteria. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. 1–21.

[40] David Kirsh and Paul Maglio. 1994. On distinguishing epistemic from pragmatic
action. Cognitive science 18, 4 (1994), 513–549.

[41] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks–a publishing format for
reproducible computational workflows. In Positioning and power in academic
publishing: Players, agents and agendas. IOS press, 87–90.

[42] Michelle S Lam, Janice Teoh, James A Landay, Jeffrey Heer, and Michael S
Bernstein. 2024. Concept Induction: Analyzing Unstructured Text with High-
Level Concepts Using LLooM. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–28.

[43] Doris Jung Lin Lee and Aditya G Parameswaran. 2018. The Case for a Visual Dis-
covery Assistant: A Holistic Solution for Accelerating Visual Data Exploration.
IEEE Data Eng. Bull. 41, 3 (2018), 3–14.

[44] Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A Hearst,
et al. 2021. Lux: always-on visualization recommendations for exploratory
dataframe workflows. arXiv preprint arXiv:2105.00121 (2021).

[45] Arthur Li. 2013. Handbook of SAS® DATA Step Programming. CRC press.
[46] Jingyi Li, Eric Rawn, Jacob Ritchie, Jasper Tran O’Leary, and Sean Follmer. 2023.

Beyond the artifact: power as a lens for creativity support tools. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology.
1–15.

[47] Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baille Chen, Zui
Chen, Michael Franklin, Tim Kraska, Samuel Madden, and Gerardo Vitagliano.
2024. A Declarative System for Optimizing AI Workloads. arXiv preprint
arXiv:2405.14696 (2024).

[48] Chunwei Liu, Gerardo Vitagliano, Brandon Rose, Matt Prinz, David Andrew
Samson, and Michael Cafarella. 2025. PalimpChat: Declarative and Interactive
AI analytics. arXiv preprint arXiv:2502.03368 (2025).

[49] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the middle: How language models
use long contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157–173.

[50] Vivian Liu and Lydia B Chilton. 2022. Design guidelines for prompt engineering
text-to-image generative models. In Proceedings of the 2022 CHI conference on
human factors in computing systems. 1–23.

[51] Qianou Ma, Weirui Peng, Hua Shen, Kenneth Koedinger, and Tongshuang
Wu. 2024. What you say= what you want? Teaching humans to articulate
requirements for LLMs. arXiv preprint arXiv:2409.08775 (2024).

[52] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al.
2023. Self-refine: Iterative refinement with self-feedback. Advances in Neural
Information Processing Systems 36 (2023), 46534–46594.

[53] Samuel Madden, Michael Cafarella, Michael Franklin, and Tim Kraska. 2024.
Databases Unbound: Querying All of the World’s Bytes with AI. Proceedings of
the VLDB Endowment 17, 12 (2024), 4546–4554.

[54] Wes McKinney et al. 2011. pandas: a foundational Python library for data
analysis and statistics. Python for high performance and scientific computing 14,
9 (2011), 1–9.

[55] Andrew M McNutt, Chenglong Wang, Robert A Deline, and Steven M Drucker.
2023. On the design of ai-powered code assistants for notebooks. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–16.

[56] Midjourney. 2025. Midjourney: AI-based Image Generation Service. https:
//www.midjourney.com/. Accessed: 2025-04-09.

[57] Michael Muller, Ingrid Lange, Dakuo Wang, David Piorkowski, Jason Tsay,
Q Vera Liao, Casey Dugan, and Thomas Erickson. 2019. How data science
workers work with data: Discovery, capture, curation, design, creation. In
Proceedings of the 2019 CHI conference on human factors in computing systems.
1–15.

[58] Tamara Munzner. 2014. Visualization analysis and design. CRC press.
[59] Allen Newell. 1972. Human problem solving. Upper Saddle River/Prentive Hall

(1972).
[60] Jakob Nielsen. 1994. Usability engineering. Morgan Kaufmann.
[61] Tobias Nipkow. 2003. Jinja: Towards a comprehensive formal semantics for a

Java-like language. In Proc. Marktobderdorf Summer School. IOS Press Amster-
dam.

[62] D. A. Norman. 1987. Some observations on mental models. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 241–244.

[63] Aditya Parameswaran, Shreya Shankar, Parth Asawa, Naman Jain, and Yujie
Wang. 2023. Revisiting Prompt Engineering via Declarative Crowdsourcing.
(2023). https://par.nsf.gov/biblio/10531530

[64] Liana Patel, Siddharth Jha, Carlos Guestrin, and Matei Zaharia. 2024. Lotus:
Enabling semantic queries with llms over tables of unstructured and structured
data. arXiv preprint arXiv:2407.11418 (2024).

[65] Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An inter-
active data cleaning system. In VLDB, Vol. 1. 381–390.

[66] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[67] Arvind Satyanarayan. 2024. Intelligence as Agency. In Adjunct Proceedings of
the 37th Annual ACM Symposium on User Interface Software and Technology.
1–3.

[68] Donald A Schön. 1979. The reflective practitioner. New York (1979).
[69] Vidya Setlur and Melanie Tory. 2022. How do you converse with an analytical

chatbot? revisiting gricean maxims for designing analytical conversational
behavior. In Proceedings of the 2022 CHI conference on human factors in computing
systems. 1–17.

https://arxiv.org/abs/2312.11681 [cs]
http://arxiv.org/abs/2312.11681
http://arxiv.org/abs/2312.11681
https://arxiv.org/abs/2310.03714 [cs]
http://arxiv.org/abs/2310.03714
https://www.midjourney.com/
https://www.midjourney.com/
https://par.nsf.gov/biblio/10531530

Steering Semantic Data Processing With DocWrangler

[70] Shreya Shankar, Haotian Li, Parth Asawa, Madelon Hulsebos, Yiming Lin, J
Zamfirescu-Pereira, Harrison Chase,Will Fu-Hinthorn, Aditya G Parameswaran,
and Eugene Wu. 2024. SPADE: Synthesizing Data Quality Assertions for Large
Language Model Pipelines. Proc. VLDB Endow (2024).

[71] Shreya Shankar, Aditya G. Parameswaran, and Eugene Wu. 2024. DocETL:
Agentic Query Rewriting and Evaluation for Complex Document Processing.
arXiv:2410.12189 [cs.DB] https://arxiv.org/abs/2410.12189

[72] Shreya Shankar, JD Zamfirescu-Pereira, Björn Hartmann, Aditya Parameswaran,
and Ian Arawjo. 2024. Who validates the validators? aligning llm-assisted
evaluation of llm outputs with human preferences. In Proceedings of the 37th
Annual ACM Symposium on User Interface Software and Technology. 1–14.

[73] Ben Shneiderman. 2003. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization. Elsevier,
364–371.

[74] Ben Shneiderman. 2020. Human-centered artificial intelligence: Reliable, safe &
trustworthy. International Journal of Human–Computer Interaction 36, 6 (2020),
495–504.

[75] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A fluent code
explorer for data wrangling. In The 34th Annual ACM Symposium on User
Interface Software and Technology. 198–207.

[76] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless Data Exploration with zenvisage: An Expressive
and Interactive Visual Analytics System. Proceedings of the VLDB Endowment
10, 4 (2016).

[77] Tarique Siddiqui, Paul Luh, Zesheng Wang, Karrie Karahalios, and Aditya
Parameswaran. 2018. Shapesearch: flexible pattern-based querying of trend
line visualizations. Proceedings of the VLDB Endowment 11, 12 (2018).

[78] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling llm test-
time compute optimally can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314 (2024).

[79] Robert Soden, Laura Devendorf, Richmond YWong, Lydia B Chilton, Ann Light,
and Yoko Akama. 2020. Embracing uncertainty in HCI. In Extended Abstracts of
the 2020 CHI Conference on Human Factors in Computing Systems. 1–8.

[80] Inc. Software Arts. 1979. VisiCalc. Computer software. https://www.bricklin.
com/visicalc.htm Originally developed by Dan Bricklin and Bob Frankston.

[81] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases. IEEE
Transactions on visualization and computer graphics 8, 1 (2002), 52–65.

[82] Hendrik Strobelt, AlbertWebson, Victor Sanh, Benjamin Hoover, Johanna Beyer,
Hanspeter Pfister, and Alexander M Rush. 2022. Interactive and visual prompt
engineering for ad-hoc task adaptation with large language models. IEEE
transactions on visualization and computer graphics 29, 1 (2022), 1146–1156.

[83] Hari Subramonyam, Roy Pea, Christopher Pondoc, Maneesh Agrawala, and
Colleen Seifert. 2024. Bridging the Gulf of Envisioning: Cognitive Challenges
in Prompt Based Interactions with LLMs. In Proceedings of the CHI Conference
on Human Factors in Computing Systems. 1–19.

[84] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: En-
abling multilevel exploration and sensemaking with large language models. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and
Technology. 1–18.

[85] Annalisa Szymanski, Noah Ziems, Heather A Eicher-Miller, Toby Jia-Jun Li,
Meng Jiang, and Ronald A Metoyer. 2025. Limitations of the LLM-as-a-Judge
approach for evaluating LLM outputs in expert knowledge tasks. In Proceedings
of the 30th International Conference on Intelligent User Interfaces. 952–966.

[86] Alex Tamkin, Kunal Handa, Avash Shrestha, and Noah Goodman. 2022. Task
ambiguity in humans and language models. arXiv preprint arXiv:2212.10711
(2022).

[87] Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait
Sarkar, Abigail Sellen, and Sean Rintel. 2024. The metacognitive demands and
opportunities of generative AI. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–24.

[88] Steven J Taylor, Robert Bogdan, and Marjorie L DeVault. 2015. Introduction to
qualitative research methods: A guidebook and resource. John Wiley & Sons.

[89] Martin Tricaud and Michel Beaudouin-Lafon. 2023. Revisiting creative be-
haviour as an epistemic process: lessons from 12 computational artists and
designers. In Proceedings of the 35th Australian Computer-Human Interaction
Conference. 175–190.

[90] VERBI Software. 2022. MAXQDA 2022. Berlin, Germany. https://www.maxqda.
com

[91] Jiayi Wang and Guoliang Li. 2025. Aop: Automated and interactive llm pipeline
orchestration for answering complex queries. CIDR.

[92] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Gener-
alizing from a few examples: A survey on few-shot learning. ACM computing
surveys (csur) 53, 3 (2020), 1–34.

[93] Colin Ware. 2019. Information visualization: perception for design. Morgan
Kaufmann.

[94] Michael Williams and Tami Moser. 2019. The art of coding and thematic
exploration in qualitative research. International management review 15, 1

(2019), 45–55.
[95] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay,

Bill Howe, and Jeffrey Heer. 2015. Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. IEEE transactions on visualization
and computer graphics 22, 1 (2015), 649–658.

[96] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. Ai chains: Transpar-
ent and controllable human-ai interaction by chaining large language model
prompts. In Proceedings of the 2022 CHI conference on human factors in computing
systems. 1–22.

[97] Yifan Wu, Joseph M Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
code and interactive visualization in computational notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
152–165.

[98] Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin Qu, and Chen Zhu-Tian.
2024. WaitGPT: Monitoring and Steering Conversational LLM Agent in Data
Analysis with On-the-Fly Code Visualization. In Proceedings of the 37th Annual
ACM Symposium on User Interface Software and Technology. 1–14.

[99] Kuat Yessenov, Shubham Tulsiani, Aditya Menon, Robert C Miller, Sumit Gul-
wani, Butler Lampson, and Adam Kalai. 2013. A colorful approach to text
processing by example. In Proceedings of the 26th annual ACM symposium on
User interface software and technology. 495–504.

[100] JD Zamfirescu-Pereira, Eunice Jun, Michael Terry, Qian Yang, and Björn Hart-
mann. 2025. Beyond Code Generation: LLM-supported Exploration of the
Program Design Space. arXiv preprint arXiv:2503.06911 (2025).

[101] JD Zamfirescu-Pereira, Heather Wei, Amy Xiao, Kitty Gu, Grace Jung,
Matthew G Lee, Bjoern Hartmann, and Qian Yang. 2023. Herding AI cats:
Lessons from designing a chatbot by prompting GPT-3. In Proceedings of the
2023 ACM Designing Interactive Systems Conference. 2206–2220.

[102] Sepanta Zeighami, Yiming Lin, Shreya Shankar, and Aditya Parameswaran.
[n. d.]. LLM-Powered Proactive Data Systems. Data Engineering ([n. d.]), 90.

[103] Jingyue Zhang and Ian Arawjo. [n. d.]. ChainBuddy: An AI Agent System for
Generating LLM Pipelines. arXiv:2409.13588 [cs] http://arxiv.org/abs/2409.
13588

[104] Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2024. Chat2Data: An Interactive
Data Analysis System with RAG, Vector Databases and LLMs. Proceedings of
the VLDB Endowment 17, 12 (2024), 4481–4484.

[105] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. [n. d.]. Judging LLM-as-a-Judge with MT-
Bench and Chatbot Arena. arXiv:2306.05685 [cs] http://arxiv.org/abs/2306.
05685

https://arxiv.org/abs/2410.12189
https://arxiv.org/abs/2410.12189
https://www.bricklin.com/visicalc.htm
https://www.bricklin.com/visicalc.htm
https://www.maxqda.com
https://www.maxqda.com
https://arxiv.org/abs/2409.13588 [cs]
http://arxiv.org/abs/2409.13588
http://arxiv.org/abs/2409.13588
https://arxiv.org/abs/2306.05685 [cs]
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

Shreya Shankar
1†
, Bhavya Chopra

1†
, Mawil Hasan

1
, Stephen Lee

1
,

Björn Hartmann
1
, Joseph M. Hellerstein

1
, Aditya G. Parameswaran

1
, Eugene Wu

2

A

D

BC

Figure 9: Adding an unnest operation to analyze symptoms

individually. (A) User adds a new operation. (B) “Run” button

executes with previously-cached operation outputs, while

(C) “Run Fresh” reprocesses all operations from scratch. (D)

Output viewer shows operation selectivity (10 documents

expanded to 47; a 4.7× increase), with each symptom as a

separate row preserving associated metadata.

E

F

A

B

C

D

G

Figure 10: Adding a reduce operation to summarize symptom

data. (A) The user adds a new operation. (B) They specify

which field to group by. (C) The help menu shows the AI

assistant. (D) TheAI assistant helpswith Jinja syntax. (E) User

copies the assistant’s suggestion to copy into the pipeline

editor. (F) The user runs the pipeline. (G) The output includes

a visualization of the distribution of symptoms.

A Extended Feature Walk-Through

Here, we continue the feature walk-through from Section 4.2, illus-
trating use of different operators and the AI assistant chatbot.

Recall that at the end of Section 4.2, the analyst has decomposed
their first operation into the pipeline described in Fig. 6. With the
decomposed pipeline now reliable, the analyst resumes analyzing
discomfort by symptom. They click “Add Operation” (Fig. 9A) and
select an unnest operation, specifying “symptoms” as the attribute
to flatten.6 After configuration, they click “Run” (Fig. 9B), which
uses cached outputs from previous operations, though “Run Fresh”
(Fig. 9C) remains available for complete reprocessing. The operation
executes instantly, with the output viewer showing “10 in→ 47 out”
and “4.70×” (Fig. 9D). Each row now represents a single symptom,
6unnest is akin to the “explode” operator in Pandas.

A

B

Figure 11: Prompt Refinement interface. (A) The interface vi-

sualizes the diff between prompt versions. (B) An interactive

revision history tree allows users to view and branch from

previous prompt versions.

with all other data attributes (the original transcript text and LLM-
extracted attributes like discomfort level) copied from the source
document that contained that symptom.

To summarize discomfort patterns by symptom, the analyst
adds a reduce operation (Fig. 10A-B), specifying “symptoms” as
the group-by attribute. Unsure about the how to write a Jinja tem-
plate to loop over a group of documents, they access the chat-based
AI assistant (Fig. 10C-D) and request help writing their prompt.
Using the AI’s suggested syntax (Fig. 10E), they run the pipeline
(Fig. 10F) and examine the symptom distribution (Fig. 10G). They
can switch to the table view for detailed LLM output inspection as
needed. Inspection—and the data analysis, in general—proceeds for
as long as the user would like.

	Abstract
	1 Introduction
	2 Related Work
	3 DocWrangler Design
	3.1 DocETL Background and Example
	3.2 DocWrangler Design Goals

	4 DocWrangler System
	4.1 Overview of Solution
	4.2 Feature Walk-Through
	4.3 Implementation Details

	5 User Study
	6 User Study Findings
	6.1 Users Manipulate Semantic Operations to Bridge the Gulf of Comprehension
	6.2 Users Iteratively Refine Pipelines to Navigate All Gulfs
	6.3 Participants Identified Gaps in Tooling

	7 Real-World Deployment and Usage
	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Extended Feature Walk-Through

