Building Effective Al-Powered Data Systems Shreya Shankar (UC Berkeley): Research Statement

Virtually every industry has a need to process vast amounts of unstructured data. From our journalist collaborators who
have reviewed police reports at scale to find patterns of judicial bias [5], to our medical educator users who have transformed
textbooks into flashcards [1], unstructured data tasks require complex reasoning. Large language models (LLMs) may make
such tasks amenable to automation, but we lack the foundational principles for building systems that make LLM-powered
data processing reliable, cheap, and usable.

I build open-source Al-powered data systems, tightly coupling techniques from databases and human-computer in-
teraction. My approach to research is to study where the obvious ideas break down in large-scale real-world deployments,
which can span multiple years. The resulting insights drive advances in system internals (highlighted in blue), and deepen
our understanding of user interaction in data and Al systems (highlighted in orange). In my PhD, I designed and built
the DocETL stack (docetl.org, 3.1K GitHub stars) for unstructured text analysis at scale [10, 11, 17]. DocETL has been de-
ployed in applications across journalism, law, medicine, policy, finance, and urban planning. It was recently used by public
defenders in California to analyze documents for two criminal trials, marking one of the first uses of AI-powered data
analysis in courtroom proceedings. Our query optimization techniques are being integrated into industrial databases
like Snowflake, and our ideas for Al evaluation and interface design have been adopted by LangChain [9], ChromaDB [7],
and OpenAl [8]. My first-author work has appeared and won awards in top conferences: in databases (SIGMOD, VLDB),
human-computer interaction (UIST, CSCW), and natural language processing (NAACL).

Systems for Declarative LLM-Powered Data Processing

Motivation. DocETL is a declarative system for unstructured text analysis. I started building DocETL because journalists
at Berkeley wanted to analyze 1.5 million pages of public records, such as police reports [s5]. Their goal was to extract and
aggregate instances of police misconduct to build a public database—an effort that, as noted by the investigative journalism
program’s director [4], would take decades without LLMs! As a data systems researcher, I saw an opportunity to integrate
LLM:s into declarative data processing. Users could specify pipelines using familiar operators—map, filter, reduce—
described in natural language. For the misconduct extraction task, a user could write: map ("extract all instances of
excessive force") — reduce("generate a summary for each type of excessive force incident"). The
map operator processes each document independently to extract instances, and the reduce operator aggregates extractions
across documents to generate summaries grouped by incident type.

Research. Given a pipeline of data operators, each expressed in natural language, how does a system execute the pipeline?
The simplest execution strategy compiles each operator into a single LLM prompt. Iimplemented it and expected the main
challenge to be cost optimization, as in traditional databases. To our surprise, accuracy was the bottleneck: at scale, even
powerful models like GPT-4 or Gemini-2.5-Pro missed many cases or produced false extractions. I realized that for tasks
requiring exhaustive extraction and reasoning, the effective context window of an LLM—the input length it can handle
reliably—is small, and varies with task complexity. Prompt tuning and few-shot examples offered little improvement for
our document processing pipelines; they lengthened prompts and even tended to reduce reliability.

Drawing on principles from query optimization, where relational databases rewrite queries into equivalent but cheaper
forms, I adapted the idea to LLM pipelines, using the idea of rewrites to improve reliability rather than cost. My key
insight was that to improve reliability, we can systematically decompose tasks executed by LLMs into smaller,
more focused units of work. These decompositions fall into three broad categories: splitting input data, splitting logic in
the task, or iteratively refining outputs using a validator or “judge” LLM. I formalized these patterns as rewrite directives,
which LLM agents instantiate into concrete operator configurations. For example, one directive rewrites a singlemap into a
sequence of split,map,and reduce operators, allowing the system to process smaller chunks independently and aggregate
results reliably. Enabling these rewrites required extending the operator set itself, to operators beyond relational algebra,
such as split for document segmentation into chunks, gather for augmenting each chunk with surrounding context
(e.g., section headers or document metadata), and resolve for reconciling inconsistent LLM-generated entities before
grouping or aggregation. I then designed a top-down search algorithm—inspired by the Cascades framework for query
optimization [6]—to explore these rewrites and select plans that maximize accuracy. While rewrite directives represent
a significant departure from the rigid, algebraic rewrite rules used in traditional database optimizers, the idea is already


https://docetl.org

gaining traction: for example, Snowflake now uses a rewrite directive for join optimization [2].

Implementing these rewrite directives in DocETL’s query optimizer improved recall by over 80% on the misconduct ex-
traction task [10]. I open-sourced the system, which now has over 3.1K GitHub stars, 28 contributors, and soo+
active Discord members. Over the past year, I've presented this work at popular industry conferences [3], podcasts like
TWIML and O’Reilly, and discussed the optimizer design with teams at Google, Snowflake, Redis, and ByteDance. Some
teams, e.g., the Scottish Climate Intelligence Service, have even hired engineers specifically to author DocETL pipelines.

Once users got high-accuracy pipelines, they started expressing reservations about the cost of such pipelines. For exam-
ple, the Scottish Climate Intelligence Service needed to process 100-page climate reports but found accurate pipelines
prohibitively expensive, and Google researchers exploring rewrite directives for question-answering pipelines faced sim-
ilar concerns. I collaborated with Google to extend rewrite directives for multi-objective optimization, enabling Do-
cETL to generate a Pareto frontier of pipelines balancing cost and accuracy [17]. We introduced two new classes of
rewrites: (1) “cheap” rewrites, such as changing the model, which adjust cost without additional LLM agent calls, and (2)
code synthesis directives, which rewrite operators to perform deterministic or simple parts of a task (e.g., parsing, count-
ing, deduplication) with code. These rewrites minimize the amount of work delegated to language models, often reducing
both input size and reasoning “depth” per call. Across six workloads, the new optimizer achieved up to 2 higher accu-
racy than prior systems’ best pipelines and matched their accuracy at 37% of the cost. On a real criminal-defense workload
from public defenders in a major California city, the optimizer found a pipeline that delivered 1.5x higher Fx than an
expert-written GPT-5 baseline, at only §% of the cost. The resulting analysis is being used in an ongoing criminal trial.

Overall, DocETL has sparked follow-up efforts from many students in my advisor’s group, e.g., rewrite directives with
probeabilistic guarantees on accuracy relative to the original pipeline [1s, 18]. Through DocETL’s adoption and my out-
reach, I independently secured over $100K in direct research funding and $25K in compute credits. I also estab-
lished many more collaborations across high-impact domains like medicine (with UCSF researchers) and sustainability
(with California Water Consortium) for multi-month deployments.

Interfaces for Authoring LLM-Powered Data Processing Pipelines

Motivation. When biomedical researchers began using DocETL to extract insights from research papers, they emailed
me, expressing the difficulty of authoring good pipelines. It was not for lack of domain knowledge—they knew exactly
what insights they wanted—but they struggled to express those goals as complex, ambiguous natural-language prompts.
At first, I created a simple chat interface with a graphical pipeline builder. Users could ask a question, and the system
would automatically create a pipeline or adjust operators in response. But the chat-based approach frustrated even expert
users: they did not know what to ask, how to ask it, or when something had gone wrong.

Research. Looking beneath these usability issues, I real-

ized they reflected deeper semantic gaps between users, their @9\5 .u:l'r"ﬁfi:‘:;:;; .
pipelines, and the data those pipelines operated on. My key in- \ e
sight was that user-facing challenges in Al-powered data cror \ pecitic MW
analysis could be systematically framed as three gulfs, CommmmENsion T
shown in Figure 1: comprebension (seeing and interpreting data %Z'n"siemrig?’n;’:_ cror

and results), specification (expressing intent and constraints notohiousat scale_JE)= L LREALATION
clearly), and generalization (coping with the inherent unrelia- N e

decomposition

bility of LLMs). The first two gulfs represent long-standing is-
sues in data analysis, but the third—generalization—is unique Figure 1 “Three Gulfs’ of LLM-Powered Data Processing.
to LLM-powered workflows. Because LLM:s are stochastic

and fail to generalize predictably, pipelines that appear correct on a few examples often degrade on others in subtle ways.
In DocWrangler [11], we built features to bridge the three gulfs—for example, to bridge the gulf of specification, a mode
that encourages reviewing DocETL outputs individually, taking notes, and automatically turning those notes into new
operations. DocWrangler’s online deployment has powered over 3,500 pipelines created over the last 6 months, with
users running their analyses through their own paid API accounts, across domains such as environmental analysis (US

EPA), customer support (AT&T), and government reporting (Singapore’s Ministry of Trade and Industry). This work



received a Best Paper Honorable Mention at UIST 202s.

From a systems perspective, the three gulfs framework enables precise diagnosis: when users struggle, we can identify which
gulfis the bottleneck and evaluate solutions systematically rather than addressing symptoms in an ad-hoc manner. From
an HCI perspective, the broader impact lies in the methodology that led to discovering the three gulfs—deriving insights
not from small, controlled studies, but from observing thousands of real pipelines across domains in a broad “lateral”
deployment. Al systems uniquely generate a long tail of interactions, and recognizing patterns across that diversity may
point to a new empirical foundation for studying how people build, adapt, and reason about Al systems at scale. Beyond
DocWrangler, I use the three gulfs as the conceptual foundation for a course on Al engineering and evaluation, taught
to over 3,000 industry practitioners in the summer of 2025. Participants described the framework as “the biggest thing
1 took away from the course...I used to tackle all three at once, and just kept spinning [my] wheels” (ML Engineer at Home
Depot). A staff software engineer at a major online therapy platform said, “This model completely reframed how I approach
understanding and improving LLM applications...I plan to apply it to every new feature I work on.” The three gulfs have
moved beyond research, becoming a shared language for reasoning about how LLM systems break—and how to fix them.

Automatic Evaluation of LLM Systems

When optimizing pipelines in DocETL, we needed a way to estimate accuracy automatically. Rewrites can produce hun-
dreds of new pipeline variants. Fine-tuning smaller LLMs to act as evaluators seemed appealing, but most LLM-powered
tasks—e.g., extraction, reasoning, summarization, report generation—require difficult judgments that could take months
of human labeling to reproduce. I wrote two papers on this problem, one at VLDB 2024 [12] and one at UIST 2024 [14],
showing how accuracy in LLM-powered data processing can be estimated without labeled data. My key insight was that
signals for evaluation already exist in how users iterate on their pipelines. When users edit prompts, emphasize
specific ideas, or rephrase instructions, those changes implicitly express what was wrong and what “better” means. We de-
veloped lightweight methods to automatically mine pipeline edit histories, infer binary evaluation criteria (e.g., “answers
should cite evidence,” “output must stay under 200 words”), and synthesize code-powered or LLM-as-judge evaluators.
An integer linear program then selects a minimal subset of these evaluators that collectively explain most observed LLM
errors. We also built a lightweight interface for grading outputs, which surfaces these inferred criteria to users and refines
them in the background as they provide feedback [14]. Through a user study, we surprisingly found that users’ notions of
correctness evolved as they graded outputs—a phenomenon we dubbed criteria drift. As users encountered new model
behaviors at scale, they updated their own evaluation standards, revealing that even “objective” assessment is dynamic and
negotiated over time. To support further research, I also open-sourced the PromptEvals dataset, which captures over 2000
real-world pipeline edits and evaluation criteria [16]. Overall, though first developed for batch LLM data processing, my
work has contributed foundational ideas for LLM evaluation more broadly and has already had measurable impact: my
UIST 2024 paper [14] is the most cited paper of the venue that year, and the underlying ideas now underpin
tools developed by LangChain [9, 13], ChromaDB [7], and OpenAlI [8].

Future Work

The DocETL stack’s open-source nature and real-world use across journalism, law, medicine, and policy make it an ideal
testbed: I can rapidly prototype new techniques, deploy them to hundreds of active users, and study how my ideas perform
on diverse tasks. Here, I outline three major directions for my future work: a deep systems agenda that pushes the technical
limits of unstructured data processing, a broad expansion of tools that support the full lifecycle of unstructured analysis,
and a “moonshot” investigation into how AI changes knowledge work across many different domains.

“Full-Stack” Unstructured Data Systems. Almost all LLM-powered data systems, including DocETL, depend on
commercial LLM APIs. But this is increasingly untenable. At scale, it’s more cost-effective to rent GPUs and run open-
source models locally; one manufacturing company using DocETL to triage support emails spent over $50K per month on
APIs, compared to under $10K for equivalent GPU rentals. Also, many users cannot use commercial APIsatall; e.g., UCSF
researchers need HIPAA compliance for patient notes. How can we design data systems around open-source LLMs? This
requires rethinking both inference and optimization. At the inference layer, document-processing workloads exhibit heavy
reuse that existing engines ignore. Unlike chat applications, all inputs are known in advance, operations are homogeneous,



and execution order is flexible. I am interested in building LLM caching and unstructured data compression techniques
that exploit this structure. Then, at the optimizer layer, DocETL can take hours due to two bottlenecks: calling an external
LLM agent for every rewrite proposal, and executing candidate pipelines on samples to estimate costs and accuracies. But
we now have traces from thousands of runs—enough to train agents that apply rewrite directives directly, and perhaps
even predict accuracy gains from rewrites without executing pipelines on samples. Ultimately, open-source LLMs are
now capable of high-quality analysis; the challenge is now designing data systems around them.

Supporting the Full Lifecycle of Unstructured Data Analysis. Unstructured data analysis lacks cohesive support
across its full lifecycle—from identifying what to analyze, to authoring and refining pipelines, to communicating results.
DocWrangler and DocETL fill crucial gaps in pipeline authoring, optimization, and execution, but users still struggle
at both ends of the lifecycle. Before authoring, analysts need ways to explore large collections of documents to decide
what questions to ask. If collaborating on analyses, teams need shared environments to iteratively refine pipelines and
manage provenance as prompts, models, and evaluation criteria evolve together. After analysis, they need interfaces to help
communicate findings that are often interpretive and non-deterministic. Building these tools will require new methods
of visualization, communication, and uncertainty quantification, all tightly coupled with systems support.

Understanding How AI Capabilities Reshape Society. In DocETL deployments, I've observed that once people
begin using Al to analyze data, their goals and workflows evolve in unexpected ways. Our public defender collaborators,
for example, initially used DocETL to extract racial epithets from court records, but after seeing results across cases, they
realized several court records were missing. They then repurposed their DocETL pipelines to identify the missing data.
I believe adopting Al tools does not simply automate existing workflows; it transforms them in ways we cannot expect,
because users must continually adapt their practices as model capabilities expose new possibilities and limitations. I want
to study how such workflows evolve and stabilize across domains, and to develop conceptual models that explain—and
eventually help anticipate—how Al adoption reshapes knowledge work.

Another way DocETL changes data work is by expanding the kinds of data that can be collected and studied. For instance,
our collaborators at the San Francisco Bar Association are now collecting charging documents (i.c., records listing the
charges in each case), so DocETL can extract structured features from them, enabling statistical analyses that could inform
policy. More broadly, the ability to analyze unstructured data at scale allows researchers to design new kinds of studies—for
example, social scientists can analyze thousands of hours of interviews, and policymakers can synthesize citizen feedback
en masse. I want to build systems that help domain experts to develop new methodologies for studying unstructured data.

Summary. Overall, the directions I have outlined demand expertise across many areas of computer science—e.g., ML
and NLP for learned query rewrites; computer systems design for accelerated and low-cost inference; HCI methods to
study user needs and develop design principles and theories of technology-assisted work. I am excited to draw on my
interdisciplinary skills to advance this vision, to collaborate with students and faculty across areas, and to establish new
foundations for how humans and machines create, organize, and make sense of the world’s unstructured information.

References

[1] Theanking step deck. Website, AnkiHub, 2024. Available via AnkiHub: https://www.ankihub.net/step-deck.
[2] Paritosh Aggarwal, Bowei Chen, Anupam Datta, Benjamin Han, Boxin Jiang, Nitish Jindal, Zihan Li, Aaron Lin, Pawel Liskowski, Jay Tayade, Dimitris Tsirogiannis, Nathan Wiegand, and Weicheng Zhao. Cortex
aisql: A production sql engine for unstructured data, 2025.
[3] AINews. Docetl: Agentic query rewriting and evaluation for complex document processing. Newsletter post on Buttondown.
[4] David Barstow. David barstow talks berkeley’s experiment to accelerate the production of investigative reporters. https://vcresearch.berkeley.edu/news/
david-barstow-talks-berkeleys-experiment-accelerate-production-investigative-reporters, April 2025. Accessed: 2025-10-22.
[s] Berkeley Institute for Data Science (BIDS). California police records access project. https://bids.berkeley.edu/california-police-records-access-project,2025. Accessed: 2025-10-05.
[6] Goetz Graefe. The cascades framework for query optimization. IEEE Data(base) Engineering Bulletin, 18:19-29,1995.
[7] Kelly Hong, Anton Troynikov, Jeff Huber, and Morgan McGuire. Generative benchmarking. Technical report, Chroma, April 2025. Chroma technical report, April 7, 2025.
[8] Neel Kapse and Hamel Husain. Building resilient prompts using an evaluation flywheel. https://cookbook.openai.com/examples/evaluation/building _resilient_prompts_using_an_
evaluation_flywheel, October 2025. Accessed: 2025-10-22.
[o] LangChain. Aligning llm-as-a-judge with human preferences, June 2024. LangChain blog, s min read.
[10] Shreya Shankar, Tristan Chambers, Tarak Shah, Aditya G Parameswaran, and Eugene Wu. Docetl: Agentic query rewriting and evaluation for complex document processing. Proceedings of the VLDB Endowment,
18(9):3035-3048, 2025.
[] Shreya Shankar*, Bhavya Chopra*, Mawil Hasan, Stephen Lee, Bjoern Hartmann, Joseph Hellerstein, Aditya Parameswaran, and Eugene Wu. Steering semantic data processing with docwrangler. In Proceedings of
the 38th Annual ACM Symposinm on User Interface Software and Technology, UIST 25, New York, NY, USA, 2025. Association for Computing Machinery.
[12] Shreya Shankar, Haotian Li, Parth Asawa, Madelon Hulsebos, Yiming Lin, JD Zamfirescu-Pereira, Harrison Chase, Will Fu-Hinthorn, Aditya G Parameswaran, and Eugene Wu. spade: Synthesizing data quality
assertions for large language model pipelines. Proceedings of the VLDB Endowment, 17(12):4173-4186, 2024.
[13] Shreya Shankar, Haotian Li, Will Fu-Hinthorn, Harrison Chase, J.D. Zamfirescu-Pereira, Yiming Lin, Sam Noyes, Eugene Wu, and Aditya Parameswaran. Spade: Automatically digging up evals based on prompt
refinements, November 2023. LangChain Blog, “6 min read”.
[14] Shreya Shankar, JD Zamfirescu-Pereira, Bjorn Hartmann, Aditya Parameswaran, and Ian Arawjo. Who validates the validators? aligning lim-assisted evaluation of llm outputs with human preferences. In Proceedings
of the 37th Annual ACM Symposium on User Interface Software and Technology, pages 1-14, 2024.
[1s] Shreya Shankar, Sepanta Zeighami, and Aditya Parameswaran. Task cascades for efficient unstructured data processing. Under revision in Proceedings of the ACM on Management of Data (SIGMOD), 2026.
[16] Reya Vir*, Shreya Shankar*, Harrison Chase, Will Fu-Hinthorn, and Aditya G. Parameswaran. Promptevals: A dataset of assertions and guardrails for custom production large language model pipelines. In North
American Chapter of the Association for Computational Linguistics, 2025.
[17] Lindsey Wei*, Shreya Shankar*, Sepanta Zeighami, Yeounoh Chung, Fatma Ozcan, and Aditya G. Parameswaran. Multi-objective agentic rewrites for unstructured data processing. In Progress, 2025.
[18] Sepanta Zeighami, Shreya Shankar, and Aditya Parameswaran. Cut costs, not accuracy: Lim-powered data processing with guarantees. Proceedings of the ACM on Management of Data (SIGMOD), 2026.


https://www.ankihub.net/step-deck
https://vcresearch.berkeley.edu/news/david-barstow-talks-berkeleys-experiment-accelerate-production-investigative-reporters
https://vcresearch.berkeley.edu/news/david-barstow-talks-berkeleys-experiment-accelerate-production-investigative-reporters
https://bids.berkeley.edu/california-police-records-access-project
https://cookbook.openai.com/examples/evaluation/building_resilient_prompts_using_an_evaluation_flywheel
https://cookbook.openai.com/examples/evaluation/building_resilient_prompts_using_an_evaluation_flywheel

